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	Background / Significance

	White blood cell (WBC) count is a marker of systemic inflammation and immune system health. WBC count varies acutely in response to infection and other environmental exposures, however resting-state WBC may be an indicator of chronic disease risk. Elevated resting WBC count has been associated with metabolic syndrome(Chao et al. 2014; Pei et al. 2015), cardiovascular disease(Huh et al. 2015; Loimaala et al. 2006) and mortality(Nilsson, Hedberg, and Ohrvik 2014; Ahmadi-Abhari, Luben, and Wareham 2013)).  This may reflect excess inflammation as evidenced by WBC count, or leukocytes may contribute directly to disease (Coller 2005).

There is evidence that steady-state WBC count is not fixed over time. Longitudinal analysis has shown a U-shaped pattern in WBC counts over the lifespan, with the point of inflection around 60 years old (Chmielewski et al. 2016). Heterogeneity in WBC count trajectory also exists and some trajectories are associated with morbidity and mortality(Ruggiero et al. 2007). Because WBC count is also influenced by adiposity, changes in steady-state WBC count may reflect age-related change in body composition. However, in a mouse model, different strains exhibited different WBC count trajectories, indicating these trajectories may be under genetic control (Telieps et al. 2016). 

Deep phenotyping aims to increase the granularity of a phenotype in hopes that a more precise phenotype will increase the power of a GWAS and lead to more precise and larger effect size estimates(Manchia et al. 2013). Extending a phenotype over time by characterising different patterns in longitudinal data is one strategy to deepen phenotype(Tracy 2008). Trajectory heterogeneity may be difficult to observe in large, observational datasets using standard statistical methods. Latent class mixed modeling (LCMM) is a method that can identify unobserved heterogeneity in longitudinal data and attempts to classify individuals into groups based on a linear model of repeated measurements over time (Proust-Lima, Philipps, and Liquet 2017). 

	Outline of Project
	1. Run LCMM on WBC counts repeated measures to identify latent, trajectory-based phenotypes (already completed)
2. Move latent phenotype forward to GWAS with imputed data for gene discovery (already completed)
3. Draft manuscript (in the process)
4. Publish


	Desired
Variables (essential for analysis
indicated by *)
	Phenotypes:
1. Repeated measures of WBC counts* and differential already collected in eMERGE I and stored at UW.
Covariates:
Demographic: Height, weight (at visit), sex, self-identified race and age at event*.

	Desired data
	

	Planned Statistical Analyses
	1. Run LCMM to discover latent trajectory based phenotype
2. GWAS with identified latent phenotypes as a logistic regression analyses.

 

	Ethical considerations
	 
There are no physical risks involved.

	Target Journal
	Genes and Immunity



	Milestones**
	Construct latent phenotype using LCMM
GWAS with latent phenotype and imputed data
Draft manuscript
Publish
 


** This section should include:  Timeline for completion of project, including approval, project duration, first and second draft of the paper and submission.
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Image 1: Latent trajectory phenotypes revealed by LCMM [image: manhattan.traj_EV.aug.png]
Image 2: GWAS (all ancestry) of latent phenotypes using imputed genetic dataset
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