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Background: Asthma is the most common chronic condition in
children and the third leading cause of hospitalization in
pediatrics. The genome-wide association study catalog reports
140 studies with genome-wide significance. A polygenic risk
score (PRS) with predictive value across ancestries has not been
evaluated for this important trait.
Objectives: This study aimed to train and validate a PRS relying
on genetic determinants for asthma to provide predictions for
disease occurrence in pediatric cohorts of diverse ancestries.
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method using the Trans-National Asthma Genetic Consortium
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multiancestral PRS score, used one Electronic Medical Records
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used the UK Biobank data to replicate the findings. A phenome-
wide association study was performed using the PRS to identify
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Abbreviations used

AUC: Area under the curve

eMERGE: Electronic Medical Records and Genomics (consortium)

FDR: False discovery rate

GWAS: Genome-wide association study

ICD: International Classification of Diseases

LD: Linkage disequilibrium

OR: Odds ratio

PCA: Principal component analysis

PheWAS: Phenome-wide association study

PRS: Polygenic risk score

TAGC: Trans-National Asthma Genetic Consortium
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Results: The multiancestral asthma PRS was associated with
asthma in the 2 pediatric validation datasets. Overall, the
multiancestral asthma PRS has an area under the curve (AUC)
of 0.70 (95% CI, 0.69-0.72) in the pediatric validation 1 and
AUC of 0.66 (0.65-0.66) in the pediatric validation 2 datasets.
We found significant discrimination across pediatric subcohorts
of European (AUC, 95% CI, 0.60 and 0.66), African (AUC, 95%
CI, 0.61 and 0.66), admixed American (AUC, 0.64 and 0.70),
Southeast Asian (AUC, 0.65), and East Asian (AUC, 0.73)
ancestry. Pediatric participants with the top 5% PRS had 2.80
to 5.82 increased odds of asthma compared to the bottom 5%
across the training, validation 1, and validation 2 cohorts when
adjusted for ancestry. Phenome-wide association study analysis
confirmed the strong association of the identified PRS with
asthma (odds ratio, 2.71, PFDR 5 3.71 3 10265) and related
phenotypes.
Conclusions: A multiancestral PRS for asthma based on Bayesian
posterior genomic effect sizes identifies increased odds of
pediatric asthma. (J Allergy Clin Immunol 2022;nnn:nnn-nnn.)

Key words: Genetics, asthma, GWAS, polygenic risk score, PRS,
PheWAS

Asthma is an inflammatory disease of the airway with symptoms
including coughing, wheezing, chest tightness, and shortness of
breath caused by airflow obstruction and hyperresponsiveness.1,2

Asthma affects 7million children across the United States, yielding
a prevalence equaling 10% of children, but this prevalence can vary
by sex, ancestry, and age.1 Patients with asthma experience
increased morbidity with respiratory infection, days absent from
school and work, emergency department visits, hospitalizations,
and even death. While asthma is a significant economic and health
burden, proactive treatment and specific interventions can prevent
severe disease requiring emergency or inpatient management.3,4

Given this, a major focus is primary prevention.5 There have
been substantial efforts to develop asthma prediction models based
on clinical factors,6,7 but these tools rely on early life phenotypes
that may not have been assessed. Thus, development of additional
predictive tools are warranted.

The etiology of asthma is multifactorial with contributions from
environmental and genetic factors.4,8,9 Twin studies estimate a her-
itability of 60% to 80% of asthma susceptibility attributable to ge-
netic factors while also highlighting the etiological contributions of
shared environment.10 At the time of development of this multian-
cestral asthma polygenic risk score (PRS), there were >140 studies
in the genome-wide association study (GWAS) catalog with 2167
variants reportedwith genome-wide significant results; 50 of the re-
ported studies resulted from studies of participants not of full Euro-
pean ancestry.11 These GWASs identify genetic loci that increase
risk for asthma with a common genetic variant-based narrow sense
heritability of 14.9%;12 however, any single risk locus does not pro-
vide sufficient risk discrimination to be of practical clinical use. By
accounting for genotypes at risk variants in proportion to the effect
size of each genetic locus, PRSs have the potential to be tools for
incorporating genetic risk into clinical decision support.13

A PRS for asthma has been developed; however, the data used
to generate the PRS were limited to individuals of European
descent. The limited diversity of participants used to generate the
PRS is a problem because different demographic groups may
have different underlying genetic etiologies. For example,
although pediatric- and adult-onset asthma have numerous shared
risk loci, genetic studies have also identified distinct risk loci in
children.14 Furthermore, the risk of asthma is different across
ancestral groups, with children of African descent having higher
frequencies than children of European descent do,15-20 so it is
important that for a PRS to be maximally clinically informative,
the PRS should be developed and validated using training datasets
that are similar to the populations to whom the PRS will be
applied. Thus, a PRS developed using primarily adult studies or
based on limited ancestral diversity may not be optimal to predict
pediatric asthma. To address the current limitations, our goal was
to develop a high-quality PRS for pediatric asthma using data
from a diverse cohort representingmultiple ancestries at all stages
of the process. To address this goal, we used an existing large-
scale genome-wide association derived from diverse populations
and a Bayesian framework to derive a multiancestral PRS and
tested and validated this score in multiple cohorts and phenotype
definitions. With the development of this pediatric asthma PRS,
we are now poised to test the clinical utility.

Our intent is to evaluate the clinical utility of this PRS in a
prospective study that will include individuals across ancestral
groups. It is routine in clinical settings to ask about an individual’s
race and ethnicity. Yet, how an individual self-identifies is not
equivocal to their genetic ancestral group. Furthermore, many
individuals have admixed ancestry. Thus, we developed a multi-
ancestral PRS that could be used for all individuals.
METHODS

Study overview
The study design is presented in Fig 1.We divided the combined Electronic

Medical Records and Genomics (eMERGE) I, II, and III imputed dataset from

over 105,000 samples (https://emerge-network.org/genomics) into 2 nonover-

lapping independent datasets (eMERGE training dataset and eMERGEvalida-

tion 1 dataset 2) based on date of participation in eMERGE. The UK Biobank

cohort was used as a validation 2 dataset. For the training eMERGE dataset,

patients with asthma and controls were identified based on a validated algo-

rithm using structured data (International Classification of Diseases [ICD]

version 9 [ICD-9 493.xx] or version 10 [ICD-10 J45, J46] codes) for asthma

as well as unstructured data as previously described.21 Participants in the

eMERGE validation dataset were classified as cases by having >_2 ICD-9/10

codes for asthma and as controls by having no history of asthma or atopy.

The minor differences in case definitions were based on improvements in clin-

ical data extraction over the past 15 years of eMERGE. For the validation 2

dataset in the UK Biobank, we used a previously established algorithm that

was developed by UK Biobank team (Resource ID 4124) to identify partici-

pants with asthma.

https://emerge-network.org/genomics/


FIG 1. Study design. A, Summary statistics from 985,837 genetic variants with minor allele frequencies

(MAF) >1% in the overall (cases and controls combined) TAGC discovery GWAS were used to develop

the multiancestral asthma PRS in the context of the LD of the 1000 Genomes reference panel and the

training dataset. B, The eMERGE dataset was split into 2 independent datasets (training and validation 1)

and the UK Biobank was used as a validation 2 dataset. Subjects with confirmed pediatric-onset asthma

and controls were used for PRS training, validation 1, and validation 2 cohorts. C, Individual genotypes

from each subject in each dataset was used to perform a PCA. For each individual, genotypes at each of

the 985,837 variants included in the multiancestral asthma PRS were used to calculate a PCA-adjusted

PRS. The adjusted multiancestral PRS was applied to each individual in the training, validation 1, and vali-

dation 2 cohorts in preparation for it to be similarly applied to individuals recruited into an institutional re-

view board–approved prospective intervention study. Figure created in BioRender.
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Study population of eMERGE and UK Biobank and

phenotype ascertainment
The eMERGE Network is a National Institutes of Health–organized and

–funded consortium of US medical research institutions (https://www.genome.

gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-

Network-eMERGE). Postimputation whole genome genotyping data for partic-

ipants from the eMERGE Network were made available for this study (dbGAP

[phs000888.v1.p1]). The associated BAM, xml, and vcf files are available on

the eMERGE Commons web portal, accessible to sites as well as outside inves-

tigators who apply for access (see eMERGE Network in Web Resources). The

imputation process and genotype quality control in eMERGE followed guide-

lines that have been published previously.22 Briefly, all subjects and variants

hadmissingness <2%. Individual level genotype data were derived from 78 array

batches across 12 academic medical centers. Each batch was imputed using the

Michigan Imputation Server, which provides a missing single-nucleotide variant

genotype imputation service using the minimac3 imputation algorithm with the

Haplotype Reference Consortium genotype reference set. Only 1 genetic dataset

was retained for each participant.22

The UKBiobank is a large long-term biobank study in the United Kingdom

developed to support the investigation of the respective contributions of

genetic predisposition and environmental exposure to the development of

diseases23 including asthma.24,25 The UK Biobank postimputed data were ob-

tained through application ID: 47377.

All participants in the eMERGE and UK Biobank cohorts provided written

informed consent prior to study inclusion. The institutional review board of

each contributing institution approved the eMERGE study. The North West
Multicenter Research Ethics Committee and Patient Information Advisory

Group approved the UK Biobank study. All analyses were conducted using

deidentified data.

Prior to analyses, participant-level quality control was employed. Self-

reported race and ethnicity was not used to identify ancestry. We used

genetically defined ancestry for ancestry-specific analyses. Principal compo-

nent analysis (PCA) of genome-wide genetic variants was used to establish

ancestry (Table I). The FRAPOSA software packagewas used to performPCA

and assign all individuals into 5 major superpopulations (European, African,

Admixed American, East Asian, and South Asian).26 We used the phase 3

release of the 1000 Genomes data as a reference that consists of 2504 individ-

uals from 5 superpopulations as shown in Table E1 in this article’s Online Re-

pository available at www.jacionline.org.27 The major steps in the FRAPOSA

algorithm include computing principal components of the reference dataset

using the matched variants only and projecting computed principal compo-

nents to the target data using an optimized implementation of the Online

Augmentation, Decomposition, and Procrustes (OADP) transformation.

Next, the algorithm predicts the ancestry membership by using the K20-near-

est-neighbor method.19 The pairwise correlation between self-reported race

and genetic ancestry was 99% in UK Biobank and 97% in the eMERGE data-

set, if we exclude thosewho self-identified as having amixed or Hispanic race/

ethnicity. All participants with sex inconsistencies were removed; additionally

the dataset was pruned to remove participants to prevent duplicated individ-

uals, twins, and first-degree relatives using PLINK’s implementation of

KING robust kinship coefficients.28 In the KING pipeline, after the kinship

(relationship) matrix is calculated using high-quality markers for all individ-

uals, kinship-based pruning of samples is performed in which the program by

https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE


TABLE I. Pediatric study population

Cohort Ancestry Case/control Female/male Age, mean (SD) (y)

Training All 1,324/3,174 2,058/2,440 11.83 (5.32)

European 322/1,736 941/1,117 11.82 (5.20)

African 768/727 697/798 12.55 (5.17)

Admixed 203/642 367/478 12.14 (5.15)

Eastern Asian* 21/40 34/27 11.68 (5.11)

Southern Asian* 10/29 19/20 10.95 (6.01)

Validation 1 All 1,255/7,710 3,988/4,977 10.37 (5.97)

European 386/3,982 1,883/2,485 10.90 (5.75)

African 588/1,352 905/1,035 10.04 (6.25)

Admixed 270/2,180 1,105/1,345 11.13 (5.50)

Eastern Asian* 9/114 62/61 9.69 (6.17)

Southern Asian* 2/82 33/51 10.07 (6.18)

Validation 2 All 16,462/398,808 219,728/195,542 8.40 (4.69)

European 15,586/376,234 207,785/184,035 8.10 (4.82)�
African 310/7,508 4,385/3,433 8.21 (4.70)�
Admixed 205/5,020 2,717/2,508 8.16 (5.06)�
Eastern Asian 49/1,622 877/794 7.96 (4.12)�
Southern Asian 312/8,424 3,964/4,772 9.54 (4.74)�

A total of 70,290 cases and 467,247 controls across eMERGE and the UK Biobank in 5 superpopulations (European, Admixed American, African, East Asians, South Asian) were

evaluated. Pediatric onset was defined as diagnosis before age 18 years. Please see Table E4 for a list of all participants, including those without pediatric-onset asthma.

*Due to low sample size, subgroups identified with asterisks only included in combined adjusted PRS analysis; ancestry-specific results from these subgroups are not presented.

�Mean age of onset for validation 2 cases at the time of diagnosis (see Methods).
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default, randomly excludes 1 member of each pair of samples and prints all

independent individuals for downstream analysis.

Results were evaluated in all individuals as well as participants who were

enrolled in eMERGE as a child (age <_ 18 years). It was not possible to identify

asthma age of onset for all subjects in eMERGE who were over 18. Because

the UK Biobank enrolled only adult participants, pediatric-onset asthma was

identified through an assessment of the date of diagnosis in the context of the

subject’s current age (UK Biobank field identifiers 21003, 22147, 3786). For

both eMERGE and the UK Biobank, we are confident in the identification of

subjects with pediatric-onset asthma, while the true adult-onset asthma with

no past medical history of asthma in childhood was unable to be accurately

determined using electronic medical records.
Discovery GWAS for identifying variants to include

in PRS analysis
The PRS was built using the GWAS results from a 2018 study published by

the Trans-National Asthma Genetic Consortium (TAGC), which assessed

23,948 patients with adult- and pediatric-onset asthma and 118,538 controls.29

Table E2 in this article’s Online Repository at www.jacionline.org describes

the studies included in TAGC. The summary statistics from 2,001,280 auto-

somal genetic variants that passed quality control filters were accessed through

the GWAS catalog (https://www.ebi.ac.uk/gwas/home, assessed on January 8,

2021) and were used to calculate the PRS. A total of 985,837 autosomal ge-

netic variants with minor allele frequencies >1% in the combined training

and validation datasets (with cases and controls combined) were identified.

These 985,837 common markers were found in the 1000 Genome reference

panel, the TAGC, and in the training and validation datasets with genotyping

rates of 99.9% in the training and validation 1 datasets. A total of 983,520 of

thesemarkers (99.7%)were present in the validation 2 dataset with a total gen-

otyping rate of 98%. The complete list of the selected variants, the effect al-

leles, allele frequencies across ancestral groups, and posterior effect sizes

(see below) are included in Table E3 in this article’s Online Repository at

www.jacionline.org.
Polygenic risk scores
PRSs were calculated using PRS-CS, a Bayesian polygenic prediction

method that infers posterior effect sizes of genetic variants using GWAS
summary statistics in the context of linkage disequilibrium betweenvariants as

assessed on an external reference panel (ie, the phase 3 release of the 1000

Genomes data).30 The GWAS on which the PRS is derived is a multiancestral

metanalysis, and the effect size for all genetic variants in the study are inverse-

variance weighted with fixed effects accounting for all ancestral populations.

Continuous shrinkage priors that were implemented in this pipeline allowed

for marker-specific adaptive shrinkage: the amount of shrinkage applied to

each genetic marker is adaptive to the strength of its association signal in

the GWAS. The pipeline can accommodate diverse underlying genetic archi-

tectures. Linkage disequilibrium (LD) and an LDmatrix were determined and

built based on the highest number of ancestry representation in the discovery

set, which in our case was European. The training process (Fig 1) used the dis-

covery GWAS summary statistics (multiancestral TAGC discovery GWAS),

the reference population (individual-level 1000 Genomes genotype data),

and the individual-level genotype and phenotype data of target population

(training dataset in order to tune the hyperparameters of the prediction model

using CS [auto mode]) so that the pipeline automatically learned the sparse-

ness of the genetic architecture from data and adjusted for the LD structure

accordingly.24

We adjusted for confounding effects due to population stratification with a

linear regression model using the 10 principal components of ancestry in all

participants.31 After calculating a principal component–adjusted PRS, age and

sex were used as covariates using a logistic regression fitting model imple-

mented in R version 4.1.0.19 The residuals from this model were used to create

an ancestry-corrected PRS distribution. The distribution of unadjusted

compared to the ancestry-adjusted PRSs across the 5 ancestral groups in the

training and validation cohorts are presented in Fig E1 in this article’s Online

Repository available at www.jacionline.org.

The PRS prediction accuracy and performance was assessed by using

receiver-operating characteristic area under the curve (AUC), odds ratio (OR)

per 1 SD, and by variance explained (R2 based on the Pseudo R2 calculation

based on the McFadden method as applied in Stata) in logistic regression after

accounting for covariates (10 principal components, age, and sex). The me-

dian of the adjusted percentile distribution between cases and controls after

ancestry standardization (ie, mean PRS of 0 and SD of 1 in each group) was

assessed. As our long-term goal is to evaluate this PRS clinically, we selected

the top 5% as a threshold for high risk. This threshold was selected to identify

those at highest genetic risk while minimizing the number of people receiving

a ‘‘high risk’’ result who would not develop asthma (Fig E2 in this article’s

http://www.jacionline.org
https://www.ebi.ac.uk/gwas/home
http://www.jacionline.org
http://www.jacionline.org
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Online Repository at www.jacionline.org). To measure the discrimination of

the multiancestral asthma PRS, we report the top 5% of this distribution as

a high polygenic score and report the increased odds of asthma by comparing

the top 5% compared to both the bottom 5% and bottom 95%. After fitting the

regression model, the marginal effect of sex and ancestry were also evaluated

using the delta method implemented in Stata. These marginal effects measure

the impact of unit change in a single variable on the prediction of asthmawhile

all other variables of the adjusted multiancestral asthma PRS are constant.

Our primary outcome is predictive value in the pediatric cohorts based on

the plan to use this PRS in a prospective study focused on children. In the

tables in the Online Repository, we also report outcomes in the overall cohort

because it has additional power and allows us to compare performance in the

subset of pediatric individuals.

We also benchmarked the performance of the multiancestral PRS using 2

previously published PRS algorithms.32,33 Notably, the number of genetic var-

iants included and the populations used in the previously published PRS are

different.
PheWAS analyses
To evaluate pleiotropic effects of the multiancestral PRS for asthma against

other traits, a phenome-wide association study (PheWAS) was performed

using the R PheWAS software package in the training and validation cohorts.34

Briefly, ICD-9 codes were translated into PheWAS codes according to Phe-

WAS map.34 Cases and controls were identified based on >_2 occurrences of

the PheWAS code on different days in the cases and no instances in the con-

trols.34 For each PheWAS code, the asthma PRS was included in a logistic

regression model adjusted for age, sex, and the 10 principal components.

TheOR is based on regression analyses using each phenotype as the dependent

variable and adjusted PRS (a quantitative value calculated for each individual)

as an independent variable. A false discovery rate (FDR) of 0.05 using the

Benjamini–Hochberg procedure was implemented to account for multiple

testing.
RESULTS
The number of participants in this study in each ancestral group

that passed quality control steps (see Methods) are broken down
by age and sex and presented in Table I. In total, we analyzed
70,290 participants with asthma and 467,247 controls across the
multiancestral training, validation 1, and validation 2 datasets.
Each dataset includes participants from each of the 5 superpopu-
lations as defined by PCA of independent genetic variants (Table I
and Table E4 in this article’s Online Repository at www.
jacionline.org).

An ancestry-specific asthma PRS for asthma is not optimal for
clinical implementation, because individuals may align with
multiple ancestries. Thus, we evaluated a single multiancestral
asthma PRS that accounted for the underlying ancestral differ-
ences in the PRSs (Fig 1). The ancestry harmonization of the PRS
distribution was performed to account for the density and range of
each ancestry-specific distribution (Fig E1). After adjustment for
ancestry, the multiancestral AUC for the validation pediatric co-
horts was 0.70 (95% CI, 0.69-0.72) and 0.66 (95% CI, 0.65-0.66)
in the pediatric validation 2 cohort (Fig 2, Table II, and Table E4).
The discrimination of the PRS between the top 5th percentile to
the bottom 5th percentile was measured in the training (OR,
2.80; 95% CI, 1.87-4.12), validation 1 (OR, 3.31; 95% CI,
2.29-4.78) and validation 2 (OR, 5.82; 95% CI, 5.19-6.53), data-
sets as shown in Table II for pediatric cohorts and Table E5 in this
article’s Online Repository at www.jacionline.org for the full da-
tasets. A comparison of the PRS percentile distribution between
cases and controls is presented in Fig 3. The risk prediction per
each decile in the training, validation 1, and validation 2 cohorts
are included in Fig E2.

To confirm that using multiancestral priors did not reduce the
performance of the PRS, we calculated PRS for European cohorts
using posterior effect sizes after training using only the European
studies in TAGC (Table E6 in this article’s Online Repository at
www.jacionline.org) with trends toward better performance
with multiancestral priors. As shown in Table III and Table E7
in this article’s Online Repository at www.jacionline.org, the
multiancestral PRS performance was consistent across all ances-
tries, with better performance in the validation pediatric cohorts.
The pediatric-only training dataset demonstrated significant
discrimination using the covariate-adjusted multiancestral PRS
(European: AUC, 0.67 [95%CI, 0.64-0.70], OR per SD, 1.27; Af-
rican: AUC, 0.57 [95% CI, 0.54-0.60], OR per SD, 1.13; and Ad-
mixed American: AUC, 0.68 [95% CI,0.64-0.72], OR per SD,
1.61). These results were replicated in the pediatric validation 1
cohorts (European: AUC, 0.60 [95% CI, 0.57-0.63], OR per
SD, 1.20; African: AUC, 0.61 [95% CI, 0.58-0.63], OR per SD,
1.27; and Admixed American: AUC, 0.64 [95% CI, 0.61-0.68],
OR per SD, 1.25) (Table III [pediatric], Table E7 [overall]). The
pediatric validation 2 cohort was used to further replicate themul-
tiancestral PRS and provided the opportunity to measure the per-
formance of the multiancestral asthma PRS in Eastern and
Southern Asian cohorts (European: AUC, 0.66 [95% CI, 0.65-
0.67], OR per SD, 1.57; African: AUC, 0.66 [95% CI, 0.63-
0.69], OR per SD, 1.43; Admixed American: AUC, 0.70 [95%
CI, 0.67-0.74], OR per SD, 1.63; Eastern Asian: AUC, 0.73
[95% CI, 0.66-0.80], OR per SD, 1.32; and Southern Asian:
AUC, 0.65 [95% CI, 0.62-0.68], OR per SD, 1.32).

We compared the multiancestral asthma PRS from this study to
the 2 previously published PRSs32,33 in our 2 European training
and validation datasets. The number of genetic variants in these
PRSs were limited15,22 and were developed based on genetic
studies of European ancestry while the current PRS was devel-
oped based on a multiancestral GWAS. The AUCs in the full,
covariate-adjusted models were lower for the Belsky et al32 study
(AUC, 0.59; 95% CI, 0.57-0.61) and Dijk et al33 study (AUC,
0.60; 95% CI, 0.59-0.62) compared to the multiancestral PRSs
in our training and validation European cohorts. Furthermore,
the multiancestral PRS outperformed the previous European-
derived PRS in non-European ancestries (Fig E3 in this article’s
Online Repository at www.jacionline.org).

In the full model logistic regression analyses of the PRSs,
female sex was associated with reduced odds of asthma in
pediatric cohorts across all ancestries (training-pediatric: OR,
0.74; 95% CI, 0.65-0.86; P < .0001; validation 1–pediatric: OR,
0.69; 95% CI, 0.61-0.79; P < .0001, and validation 2–pediatric:
OR, 0.67; 95% CI, 0.65-0.69; P < .0001). This finding is consis-
tent with pediatric-onset asthma being more common in males
than in females.35,36 To assess its confounding effect, we calcu-
lated the marginal effects of sex for prediction probability of
asthma after fitting the logistic regression in the validation 2
cohort as a combined cohort and in each ancestry separately
(Fig E4 in this article’s Online Repository at www.jacionline.
org). Indeed, the better predictive probability of asthma from
the overall PRS model in males compared with in females is
consistent with the regression analysis. Similarly, we evaluated
the marginal effects of ancestry on the multiancestral PRS and
found that there was substantial overlap consistent with ancestral
normalization.

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


TABLE II. Adjusted multiancestral PRS performance in 3 independent multiancestral pediatric cohorts

Transancestral PRS performance

in pediatric cohorts AUC OR per SD* Pseudo R2 ORy top 5% vs 95% ORz top 5% vs bottom 5%

Training 0.73 (0.71-0.74) 1.21 (1.12-1.30) 0.11 1.84 (1.42-2.39) 2.80 (1.87-4.12)

Validation 1 0.70 (0.69-0.72) 1.22 (1.15-1.30) 0.08 2.16 (1.74-2.67) 3.31 (2.29-4.78)

Validation 2 0.66 (0.65-0.66) 1.59 (1.57-1.62) 0.04 2.37 (2.25-2.49) 5.82 (5.19-6.53)

The overall PRS multiancestry performance with 95% CIs after covariate and ancestry adjustment is presented. The OR of having asthma in patients within the top 5th percentile of

the PRS distribution compared to the remaining 95% are shown with 95% CIs.

*The OR (95% CI) per SD (P < .0001).

�The OR (95% CI) when comparing the top 5% of standardized adjusted PRS distribution against remaining 95% (P < .0001).

�The OR (95% CI) when comparing the top 5% of standardized adjusted PRS distribution against bottom 5% (P < .0001).

FIG 2. Multiancestral PRS performance. Overall adjusted PRS performance are shown for the training

pediatric cohort (A), validation 1 pediatric cohort (B), and the validation 2 pediatric cohort (C). The AUC and

95% CI are shown adjusted for age, sex, and 10 ancestral principal components.
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A PheWAS was performed in the combined full training and
validation cohorts to evaluate potential pleiotropic effects of the
multiancestral asthma PRS in this study with other traits. As
expected, this approach confirmed the strong association of the
multiancestral asthma PRS with asthma (OR, 2.71; 95% CI, 2.04-
3.03; FDR-corrected P [PFDR], 3.71 3 10265) (Table IV). This
exploratory analysis also identified >300 pleiotropic association
effects (PFDR < .05) including positive associations with asthma
severity and exacerbation, emphysema, and pulmonary insuffi-
ciency, as well as diabetes, eosinophilic esophagitis, food allergy,
and white blood cell disorders (Fig 4, Table IV, Table E8 in this
article’s Online Repository at www.jacionline.org). Notably, the
asthma PRS was more strongly associated with asthma than
with the related phenotype allergic rhinitis (OR, 1.24; 95% CI,
1.10-1.40; PFDR, 3.213 1024) (Tables E8 and E9 in this article’s
Online Repository at www.jacionline.org), supporting the
phenotype-specificity of the asthma PRS. This approach also de-
tected novel negative associations with traits such as hyperlipid-
emia and hypercholesterolemia (OR, 0.62; 95% CI, 0.55-0.69;
PFDR, 6.55 3 10217) (Fig 4, Table IV, Table E8).

http://www.jacionline.org
http://www.jacionline.org


FIG 3. PRS percentile comparison between pediatric patients with asthma

and controls. The violin plots of the median ancestry standardized PRS

distributions between cases and controls in pediatric training (A), validation

1 (B), and validation 2 cohorts. In the boxplot inset, the dot within each box

indicates the median score. In the training cohort (A), the median standard-

ized score of cases was 60% versus 47% in controls (P < .0001). In the vali-

dation 1 cohort (B), the median standardized score of cases was 58% versus

48% in controls (P < .0001). In the validation 2 cohort (C), the median stan-

dardized score of cases was 67% in cases versus 49% in controls (P < .0001).

The top and bottom of the boxes indicate the 75th and 25th percentiles (in-

terquartile range), respectively.
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DISCUSSION
Pediatric asthma affects ;10% of the children in the United

States. There is no cure, underscoring the importance of preven-
tion and early identification. In this study, we developed a PRS for
asthma using an ancestrally diverse group of individuals and
trained and validated the PRS’s performance using multiple inde-
pendent cohorts, which included pediatric onset as well as any age
of onset. We demonstrate that our asthma PRS has good discrim-
inatory performance in people of diverse ancestries and especially
children, is more discriminating than prior scores, and reveals po-
tential pleiotropic effects. Taken together, these results support
the value of our multiancestral PRS.

The PRS performed well across 3 independent datasets and in 5
different ancestral groups. Because of the large number of
participants assembled, we were able to evaluate the performance
of the PRS overall as well as in documented pediatric cases. This
evaluation revealed that our asthma PRS performed better in
children than in the overall cohort of subjects with combined
pediatric- and adult-onset asthma. These findings are consistent
with previous genetic variant-based heritability estimates sup-
porting a larger genetic contribution in children compared with in
adults.14 While we confidently identified individuals with
pediatric-onset asthma, a limitation of this study was our inability
to identify individuals with adult-onset asthma (ie, some adults
with asthma could have developed disease as a child).

Notably, our multiancestral asthma PRS performed better
based on AUCs than prior asthma PRSs, especially when
considering non-European populations. Based on assessment
of the PGS catalog (https://www.pgscatalog.org/) in August
2021, there are currently 2 published studies focusing on PRS
development for asthma alone.32,33 These studies were limited
primarily to European ancestral groups and PRS development
was based on P-value thresholding. In complex diseases with
many modest genetic effects such as asthma, the P-value thresh-
olding methodology can underperform due to the omission of
many variants with weaker phenotype association.30 In contrast,
the Bayesian approach used in this study incorporates genome-
wide variants after considering the underlying LD population
substructure and generates a posterior effect size for all variants
included in the study. The benefits of the Bayesian strategy
relative to other PRS approaches that use effect-size weighted
additive model include30 (1) all association data from a
GWAS are used—including information that is usually not
included in approaches that start with robust genetic associa-
tions; (2) the approach incorporates the differences in LD and
genetic architecture between ancestral groups; and (3) the use
of continuous shrinkage priors allows the model to consider
robust genetic signals with large effect sizes as well as small
effects with less significant association signals. This suggests
that the Bayesian methodology is superior for the development
of a PRS. However, because we compared different methodol-
ogy and different populations (multiancestral), a broader
comparison of these methods for the development of multian-
cestral pediatric asthma PRSs is justified.

The improved performance of our PRSmay also be due to both
the approaches used—Bayesian and multiancestral. Because
asthma risk varies by ancestry, including individuals from diverse
ancestral groups will be essential to ensure the clinical use of
PRSs does not exacerbate health disparities.37 Other approaches
to develop transancestral and multiancestral PRSs differ by how
they select and weigh genetic risk variants and how they integrate
genetic data with other clinical and environmental data.38-42

While we used PRS-CS, other models use best linear unbiased
prediction (BLUP) and least absolute shrinkage and section oper-
ator approaches (LASSO) to estimate genetic effect sizes in joint
models of multiple variants, and predictions are performed simul-
taneously.43-46 There are also numerous methods that use
different approaches to account for differences in LD in individ-
uals of different ancestry.47,48 As statistical methods are devel-
oped to improve multiancestral PRS, multiancestral asthma
PRS should be continuously refined with future publications of
genetic association studies of asthma in larger, admixed popula-
tions. It is possible that similarly powered ancestry-specific ana-
lyses would identify additional loci with more impactful effect
sizes; however, the results of the multiancestral studymight prove

https://www.pgscatalog.org/


TABLE III. Multiancestral asthma PRS performance in 3 independent cohorts

Pediatric cohorts AUC (full model)* Pseudo R2 OR per SDy
European ancestry

Training 0.67 (0.64-0.70) 0.05 1.27 (1.12-1.44)

Validation 1 0.60 (0.57-0.63) 0.02 1.20 (1.08-1.34)

Validation 2 0.66 (0.65-0.67) 0.04 1.57 (1.55-1.60)

African ancestry

Training 0.57 (0.54-0.60) 0.01 1.13 (1.01-1.26)�
Validation 1 0.61 (0.58-0.63) 0.02 1.27 (1.14-1.42)

Validation 2 0.66 (0.63-0.69) 0.03 1.43 (1.24-1.65)

Admixed American ancestry

Training 0.68 (0.64-0.72) 0.07 1.61 (1.28-2.02)

Validation 1 0.64 (0.61-0.68) 0.03 1.25 (1.06-1.47)

Validation 2 0.70 (0.67-0.74) 0.07 1.63 (1.36-1.95)

Eastern Asian ancestry

Validation 2 0.73 (0.66-0.80) 0.08 1.32 (0.99-1.77)�
Southern Asian ancestry

Validation 2 0.65 (0.62-0.68) 0.03 1.32 (1.18-1.48)

The standardized PRS distribution was evaluated in a logistic regression model adjusted for age and sex as well as the 10 principal components that informed the 5

superpopulations. The AUC and 95% CI, OR per SD, and the total variation explained (pseudo R2) are shown.

*AUC full model includes age, sex, and 10 principal components.

�The OR per SD of PRS distribution (logistic regression P < .0001).

�For the African Ancestry eMERGE datasets 1-pediatric and Eastern Asian UK Biobank-pediatric cohorts, P 5 .03 and .07, respectively.

TABLE IV. Selected results of PheWAS applying multiancestral asthma PRS to training and validation 1 cohorts

Description* PheWAS-code Case Control ORy 95% CI PFDR

Positively associated with asthma PRS

Asthma 495 12,963 70,020 2.71 2.41-3.02 3.17 3 10265

Asthma with exacerbation 495.2 3,043 70,020 4.72 3.74-5.95 3.39 3 10239

Emphysema 508 8,276 73,217 1.78 1.56-2.05 1.22 3 10216

Chronic obstructive asthma 495.1 1,433 70,020 3.23 2.35-4.45 4.90 3 10213

Type 1 diabetes 250.1 4,283 69,292 1.91 1.58-2.30 1.16 3 10211

Chronic airway obstruction 496 8,056 70,020 1.56 1.36-1.80 5.57 3 10210

Respiratory failure 509 6,029 73,217 1.61 1.37-1.88 3.05 3 1029

Wheezing 512.1 2,234 47,495 2.17 1.68-2.82 4.37 3 1029

Diabetes mellitus 250 19,764 69,292 1.34 1.21-1.48 9.36 3 1029

Eosinophilic esophagitis 530.15 607 62,044 3.85 2.38-6.20 3.40 3 1028

Type 2 diabetes 250.2 19,137 69,292 1.32 1.19-1.46 9.78 3 1028

Diseases of white blood cells 288 4,694 77,026 1.61 1.35-1.91 1.14 3 1027

Allergic reaction to food 930 1,688 65,842 2.25 1.66-3.04 1.49 3 1027

Negatively associated with asthma PRS

Postmenopausal disorders 627 11,313 75,725 0.55 0.48-0.63 8.00 3 10218

Peripheral enthesopathies 726 16,894 66,608 0.64 0.57-1.71 6.31 3 10217

Hypercholesterolemia 272.11 19,899 51,696 0.62 0.55-0.69 6.55 3 10217

Hematuria 593 7,632 68,213 0.55 0.48-0.64 2.50 3 10216

Benign neoplasm of skin 216 11,233 79,947 0.63 0.56-0.71 1.86 3 10214

Disorders of lipid metabolism 272 41,493 51,696 0.73 0.67-0.80 1.04 3 10211

Hyperlipidemia 272.1 41,299 51,696 0.73 0.67-0.80 1.11 3 10211

Disorders of synovium 727 9,291 66,608 0.64 0.56-1.73 3.65 3 10211

Cataract 366 14,306 81,833 0.67 0.60-0.76 5.14 3 10211

Carbohydrate transport disorder 271 1,410 97,301 0.36 0.27-0.49 1.34 3 10210

Disaccharide malabsorption 271.3 1,302 97,301 0.35 0.25-0.48 1.40 3 10210

Elevated prostate specific antigen 796 2,746 84,778 0.53 0.41-0.67 2.92 3 1027

*Selected results at PFDR < .05. The complete lists of traits are included in Table E5.

�OR < 1 indicates negative association of trait with asthma PRS.
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to be more broadly useful when applied to a heterogenous popu-
lation, such as the type of people who go to a primary care setting.
Furthermore, a major strength of our multiancestral PRS is that a
single PRS is applicable to all ancestral groups. Thus, clinicians
and researchers will not be required to a priori assign an individ-
ual to an ancestral group.
While TAGC might be the largest and most diverse meta-
analysis from the perspective of genetic ancestry, there are several
limitations to consider in the context of the multiancestral asthma
PRS. Specifically, if there are differences in the genetic etiology
by age of onset of asthma, the TAGC is not composed of a
majority of pediatric cases. Furthermore, the degree to which



FIG 4. A plot of PheWAS analysis of the asthma PRS within the combined training and validation cohorts.

Manhattan plots of phenome-wide association analyses with phecodes (x-axis) and FDR-corrected PheMap

phenotype probability (y-axis). The red line indicates the Bonferroni level of significance (5.03 1025).
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pediatric-onset asthma cases are represented in the meta-analysis
differs greatly based on the race and ethnicity of the component
studies. Thus, while our PRS performedwell for pediatric asthma,
continued refinement of the PRS is warranted with special focus
on pediatric cases and capturing more ancestral diversity in the
discovery data.

To understand how underlying asthma risk may relate to a
variety of conditions, we performed a PheWAS analysis to
examine positive or negative association of other conditions
with the asthma PRS. Notably, we measured a stronger effect size
for asthma with exacerbation (PheWAS code 495.2; OR, 4.72)
and chronic asthma (PheWAS code 495.1; OR, 3.23) than asthma
(PheWAS code 495; OR, 2.71) (Table IV). In the case of this Phe-
WAS, the OR is based on regression analyses using each pheno-
type as the dependent variable and adjusted PRS as an
independent variable. These findings suggest that the asthma
PRS may be useful not only for prevention but also to help clini-
cians select treatment strategies for children already diagnosed
with asthma. These findings require replication, as we do not
have sufficiently uniform measurements in the subjects in the
training, validation 1, and validation 2 cohorts to identify whether
PRS in patients is associatedwith disease severity. However, these
findings provide rationale for a controlled prospective study to
test the association of asthma severity with PRS. Not surprisingly,
other atopic conditions such as eosinophilic esophagitis and food
allergy were positively associated with the asthma PRS, as these
conditions have been noted to have increased rates in patients
with asthma.49,50 However, we also found positive associations
with type I and type II diabetes. Intriguingly, several studies
have reported a higher-than-expected co-occurrence of asthma
and type I diabetes, supporting a partially shared genetic etiol-
ogy.51-53 We also found a surprising negative association between
our asthma PRS and hypercholesterolemia/hyperlipidemia. In
contrast to our findings, previous meta-analyses have reported
that asthma is associated with worse lipid profiles at a phenotypic
level.54 One possible explanation for this discrepancy is that the
use of inhaled corticosteroids (a primary treatment of asthma) is
associated with a worse lipid profile in adults.55 It is also possible
that environmental factors, such as pollution, are driving
increased risks for asthma as well as poor lipid profiles.56-58

While the PheWAS analysis suggests potential pleiotropic effects
(both increased and decreased risk of other diseases), additional
work is required to clarify these relationships.

This study is an initial step toward developing a multiancestral
PRS to be used in the eMERGE IV network (https://www.
genome.gov/Funded-Programs-Projects/Electronic-Medical-
Records-and-Genomics-Network-eMERGE) prospective inter-
vention cohort study beginning in 2022. The eMERGE IV study
will enroll 5000 children (underrepresented, non-European
preferred) across the 10 eMERGE clinical sites. Multiancestral
PRS for 4 phenotypes (asthma, obesity, type I diabetes, type II
diabetes) will be calculated and returned to participants’ parents
and primary care providers. Parents and primary care providers
of children with a high-risk asthma PRS (top 5th percentile)
will also receive guideline-informed health recommenda-
tions.59,60 We seek to understand how primary care providers, pa-
tients, and patient families change their behavior in reaction to a
top 5th percentile asthma PRS. The prospective study will collect
family history information and clinical factors to display along
with an asthma high-risk PRS that providers can use to calculate
the Pediatric Asthma Risk Score. Recent studies have validated
the Pediatric Asthma Risk Score as a tool to predict asthma devel-
opment in young children based on family history, eczema before
age 3 years, wheezing apart from colds before age 3, African
American ancestry, and sensitization to >_2 food or aero
allergens.7

A previous group suggested that their pediatric asthma PRS did
not provide any discriminatory value above clinical risk factors.33

https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
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Yet, assessing clinically predictive factors can be challenging due
to the lack of consistent capturing of such data in cohorts with suf-
ficient statistical power. Even if the PRS and the clinical risk pre-
diction substantially overlap in who is identified at risk, the
development of such a PRS would still be of value. This is
because not all children undergo allergic sensitization testing
before age 3 years, and clinical presentations such as eczema
and wheezing without a cold may not be recognized by parents.
Thus, alternative strategies for risk stratification are needed.
Notably, there are already preventive measures that can be prior-
itized if a child is identified as high risk.61 For example, once a
child is identified as high risk for asthma, families can be coun-
seled to limit smoke exposure, identify and avoid known aller-
gens, prevent viral infection, and limit dust and mold
exposure.4,62,63 However, we recognize that the use of genetics
alone to predict asthma has inherent limitations, because both
genes and environment contribute to asthma risk.

A long-term goal beyond eMERGE IV will be to create and
validate a combined/integrated predictive model that includes
genetic, family history, clinical, and environmental risk factors.
Data collected during the eMERGE IV prospective study will
provide essential elements toward our long-term goal. In addition
to genotype data, family history information, and relevant clinical
factors, we will also have geocodes to develop a combined/
integrated predictive model.

In conclusion, we present the development and validation of a
pediatric asthma PRS that performs effectively across ancestries
in 3 independent cohorts and identifies novel pleiotropic relation-
ships. In the future, this PRS will be used in the context of
additional demographic and clinical risk factors as part of a
genome-informed risk assessment to help families of children at
high risk for asthma take preventive steps to avoid disease.

Clinical implications: This PRS will be used to identify children
at increased risk for asthma across a multisite multiancestral
prospective intervention cohort study.
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