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Predictive Utility of Polygenic Risk Scores
for Coronary Heart Disease
in Three Major Racial and Ethnic Groups

Ozan Dikilitas,1 Daniel J. Schaid,2 Matthew L. Kosel,2 Robert J. Carroll,3 Christopher G. Chute,4

Joshua A. Denny,3 Alex Fedotov,5 QiPing Feng,6 Hakon Hakonarson,7 Gail P. Jarvik,8

Ming Ta Michael Lee,9 Jennifer A. Pacheco,10 Robb Rowley,11 Patrick M. Sleiman,7 C. Michael Stein,6

Amy C. Sturm,9 Wei-Qi Wei,3 Georgia L. Wiesner,12 Marc S. Williams,9 Yanfei Zhang,9

Teri A. Manolio,11 and Iftikhar J. Kullo1,*

Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived frommainly European ancestry (EA) cohorts, their val-

idity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of ‘‘restricted’’ and

genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 5 14 years, 58%

female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50

variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA

cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of

PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with

CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios

(95%CI) per 1 SD increase were 1.53 (1.46–1.60), 1.53 (1.23–1.90), and 1.27 (1.13–1.43) for incident CHD in EA, HE, and AA individuals,

respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction ¼ 0.77) but were significantly attenuated in AA in-

dividuals (pinteraction ¼ 2.9 3 10�3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble

diverse cohorts to generate ancestry- and ethnicity PRSs.
Introduction

Coronary heart disease (CHD) is a genetically complex

disease with an estimated heritability of 40%–60%.1,2

Over the past decade, genome-wide association studies

(GWAS) have revealed numerous genetic susceptibility

loci for CHD,3–10 generating interest in the use of poly-

genic risk scores (PRSs) to improve prediction of adverse

CHD events.11,12 ‘‘Restricted’’ PRSs12–16 typically include

variants reaching genome-wide significance (p < 5 3

10�8) and account for only a small proportion of herita-

bility, suggesting there might be additional information

in variants that are below the genome-wide significance

threshold.1,17Genome-wide PRSs select from millions of

variants across the genome by applying more lenient

type I error thresholds and accounting for linkage

disequilibrium (LD) between variants.18–20 Such PRSs

for CHD in European ancestry (EA) individuals outper-

form restricted polygenic scores, identifying individuals

who have a 2–3 times higher risk of developing CHD

than does the general population in the UK Biobank

dataset.18,19
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These reports have generated enthusiasm about the use of

genome-wide PRSs to improve prediction of adverse CHD

events, but their validity inminority populations is unclear.

Differences in allele frequencies and LD patterns at risk loci

limit the generalizability of variants identified in EA cohorts

to other racial and ethnic groups.7,9,21–25 Lack of diversity in

many of the available datasets, and consequently limited

sample sizes and power for minority-specific GWASs, have

hindered development of racial and ethnicity specific PRSs

for CHD.4,7–9,23,25–28 To prevent exacerbation of health dis-

parities in the context of genomicmedicine, researchers will

need to assess the predictive utility of different types of PRSs

across ancestral and ethnic groups.

We therefore investigated the strengths of associations

of available PRSs with CHD in EA, African ancestry (AA),

and Hispanic ethnicity (HE) adults by using a high-den-

sity genotype dataset linked to electronic health record

(EHR) data from the electronic medical records and

genomics (eMERGE) network.29,30 We hypothesized

that PRSs derived from EA cohorts would be less strongly

associated with CHD in non-EA cohorts because of

reduced specificity and lower effect sizes of risk alleles.
USA; 2Department of Health Sciences Research, Mayo Clinic, Rochester, MN

, Vanderbilt University Medical Center, Nashville, TN 37212, USA; 4Schools

, MD 21205, USA; 5Irving Institute for Clinical and Translational Research,

linical Pharmacology, Department of Medicine, Vanderbilt University Med-

n’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; 8Department of

ville, PA 17822, USA; 10Center for Genetic Medicine, Northwestern Univer-

Genome Research Institute, Bethesda, MD 20892, USA; 12Department of

rican Journal of Human Genetics 106, 707–716, May 7, 2020 707

https://twitter.com/iftikhar_kullo
mailto:kullo.iftikhar@mayo.edu
https://doi.org/10.1016/j.ajhg.2020.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2020.04.002&domain=pdf


Methods

Study Cohort
The eMERGE network is a US-based consortium of cohorts in

which DNA samples are linked to EHR data to enable large-scale,

high-throughput genomic studies.29,30 At the time of our analysis,

the network, in its third phase, included 99,185 genotyped partic-

ipants from 12 geographically distinct healthcare institutions

located across the US, eachwith its own biorepository and site-spe-

cific eligibility criteria for enrollment. Themajority of the eMERGE

sites recruited primarily from the outpatient setting (Table S1). The

Mayo Clinic cohort partially included individuals referred for non-

invasive vascular evaluation or cardiac stress testing (n ¼ 3,640,

35% of the Mayo Clinic genotyped cohort). Details of the enroll-

ment process of each biorepository contributing to the eMERGE

network have been previously published.29,30 Each member site

obtained approval from its respective institutional review board.
Genotype Data
High-density genotype data were available for 99,185 participants

from the eMERGE network. To harmonize the genotype data

from 12member sites, we imputed each of the 80 Illumina and Af-

fymetrix genotype batches31 via the Michigan Imputation Server

byusing theminimac3algorithmand thegenotype referencepanel

from the Haplotype Reference Consortium.32,33 A detailed descrip-

tionofquality-control procedureshasbeenpreviouslypublished.31
Ascertaining CHD Events
We limited our study cohort to adult participants (R18 years) with

at least 1 year of EHR history. To ascertain CHD, defined as occur-

rence of either myocardial infarction (MI) or coronary revascular-

ization events (such as percutaneous coronary intervention or cor-

onary artery bypass grafting), we used an electronic phenotyping

algorithm based on International Classification of Diseases, 9th and

10th revisions, Clinical Modification (ICD-9-CM and ICD-10-CM)

codes and Current Procedural Terminology (CPT) codes. Individuals

with MI were defined as those whose EHR included at least two

related diagnostic codes on separate occasions within a 5-day win-

dow, and individuals with coronary revascularization were defined

as those who had at least one relevant procedural code in the EHR.

The CHD-related diagnostic and procedural codes were obtained

from two previously validated eMERGE electronic phenotyping al-

gorithms34,35 and adapted for this study. A list of diagnostic and

procedural codes is provided in the Supplemental Information.

DNA sample collection dates were not always available for

participants; therefore, follow-up was started from the time of

their first EHR. For each participant, we identified the first

CHD event and classified it as ‘‘incident’’ if the event occurred

at least 6 months after the participant’s first record in the EHR

and if there were no previous ICD-9-CM or ICD-10-CM codes asso-

ciated with CHD. All other CHD events were classified as ‘‘preva-

lent.’’ Individuals without an index event based on the above

definition but who had other CHD-related codes in their record

(i.e., participants with uncertain CHD event data) were excluded.

After applying these criteria, we further excluded eMERGE

sites that had very few participants (<15) or that had no CHD

events (Table S1).

To validate the CHD phenotyping algorithm, we conducted a

manual EHR review, at one eMERGE site (Mayo Clinic), of 25 indi-

viduals with incident CHD, 25 individuals with prevalent CHD,

and 25 non-CHD control individuals. The algorithm had a posi-
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tive-predictive value of 88% and 96% for individuals with incident

and prevalent CHD, respectively, and a negative-predictive value

of 100% for non-CHD control individuals.
Ascertaining Conventional Risk Factors
To ascertain hypertension and diabetes, we used ICD-9-CM and

ICD-10-CM codes (obtained from previously validated eMERGE

algorithms34,36,37 on the Phenotype KnowledgeBase (PheKB);38

see Supplemental Information) and required the presence of at

least two codes on separate days in an individual’s EHR. Hypercho-

lesterolemia was defined as the presence of related diagnostic

codes (at least two codes on separate days) or having a low-density

lipoprotein cholesterol (LDL-C) >160 mg/dl or non-high-density

lipoprotein cholesterol (non-HDL-C) >190 mg/dl. Statin therapy

was defined as the presence of at least two statin medication re-

cords on two different days. For incident cases, the presence

of conventional CHD risk factors during the period preceding

the index event was ascertained. For the remaining participants

without an index event, these risk factors were ascertained in

the window between the earliest record and the median time until

index CHD events in the incident cases of the corresponding

racial-ethnic group.
Calculating PRS and Quality Control
We identified three mutually exclusive racial and ethnic groups,

namely, non-Hispanic EA, non-Hispanic AA, and HE. We identi-

fied EA and AA individuals by matching genetic ancestry

(with principal component analysis (PCA)-based k-means) and

self-reported ancestry in which individuals self-identified to be

‘‘non-Hispanic,’’ whereas HE individuals were identified by self-

report (Figure S1).31 We excluded any ambiguous AT/GC single-

nucleotide variants (SNVs) as well as any SNVs demonstrating

allele mismatch between the eMERGE dataset and published

PRSs and applied the following quality-control metrics to the

genotype data of each racial and ethnic group: SNV and per-indi-

vidual call rate > 95%, Hardy-Weinberg equilibrium p value > 1 3

10�5, and imputation quality r2 > 0.3 via PLINK.39,40 To estimate

ancestry-specific genetic principal components robust to admix-

ture and cryptic relatedness, we used PC-AiR41 and KING-

robust42 separately in each group.

We assessed two restricted PRSs (i.e., Tikkanen et al. and Tada

et al., 28 and 50 variants, respectively)13,14and two genome-

wide PRSs (i.e., metaGRS and LDPred, 1.7 M and 6.6 M variants,

respectively)18,19 for CHD in EA populations, hereafter denoted

as PRSTikkanen, PRSTada, PRSmetaGRS, and PRSLDPred, respectively

(Table S2). In brief, PRSTikkanen and PRSTada included variants

that, at the time these PRSs were developed, were associated

with CHD at genome-wide significance in the literature. PRSLDPred

is based on a Bayesian approach that assumes that a fraction

of variants in the genome are causal for CHD and then infers

the posterior mean effect size of each GWAS marker, while

taking into account this assumption and LD between neigh-

boring variants.18,20 PRSmetaGRS is derived with a meta-analytic

approach that combines three different previously developed

PRSs: GRS46K19,43 (nSNV ¼ 46,000 after LD-based pruning), a PRS

based on a GWAS conducted by Nikpay et al.19,27 (nSNV ¼ 1.7 M

after LD-based pruning), and FDR20219,27 (nSNV ¼ 202), which

was derived by application of a false-discovery-rate threshold of

<0.05 to the previously published CHDGWAS summary statistics.

PRSmetaGRS was constructed as an average of all three PRSs within a

training set in UK Biobank (n ¼ 3000) and was weighted by the
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logarithm of hazard ratios (HRs) for CHD of each PRS and inter-

PRS correlation coefficients.

The effect-size estimates for the SNVs used in these scores were

obtained from the relevant studies. We used the PRSice pipeline44

to calculate PRSs as a weighted sum of all the effect alleles on the

basis of allele dosages and the provided SNV effect sizes. All scores

were standardized to zero-mean and unit-variance within each

racial and ethnic group.
Statistical Analyses
In our primary analyses, we excluded prevalent CHD (as defined

above) and evaluated PRSs separately in each racial and ethnic

group by using Cox proportional hazards regression. Participants

were right censored at age 75 years (because of an insufficient

number of CHD events in non-EA cohorts beyond that age) or at

the age of last observation in the EHR (whichever was first). In

Cox models, we included PRS as a continuous variable; adjusted

for sex, eMERGE site, and first five ancestry-specific principal com-

ponents; and used age as the timescale. Associations of PRSs with

incident CHD independent of conventional risk factors were also

assessed after adjustment for these risk factors. Schoenfeld resid-

uals and interaction terms for PRS and time were assessed in all

Cox regression models for any significant departure from the pro-

portional-hazards assumption.

We additionally evaluated the association of a PRS with CHD

separately in each group by including all CHD-affected individuals

(i.e., those with either incident or prevalent CHD) and using

multivariable logistic regression with disease as the outcome and

PRS as the predictor; we adjusted for age at first EHR record, sex,

eMERGE site, duration of EHR, and first five ancestry-specific prin-

cipal components. For these models, we computed the c-index

(i.e., area under the receiver-operator characteristic curve) by using

the pROC package.

To investigate whether the strength of association of a PRS

with CHD was modified by an individual’s race or ethnicity,

we performed analyses including all three racial and ethnic

groups. In these regressionmodels, we included a racial and ethnic

group indicator as an adjustment variable as well as an interaction

term for this variable and PRS. We further adjusted for population

structure within each group by using a design matrix of the first

five ancestry-specific principal components estimated separately

for each racial and ethnic cohort.

To explore the potential clinical utility of EA-based PRSs that

were significantly associated with CHD in non-EA groups, we

estimated the 10-year absolute risk of MI as a function of PRS

for EA and AA individuals. We used the iCARE statistical pack-

age45,46 to compute absolute risk estimates by combining the

following: (1) HRs of PRSs (per 1 SD increase) for incident CHD,

(2) PRS distributions in the eMERGE cohort, and (3) age-, sex-,

race-, and ethnicity-specific rates of incident MI in the US and

respective non-CHD mortality rates as competing risks. We used

the 2019 heart disease and stroke statistics reported by the Amer-

ican Heart Association (AHA)47 to obtain rates of incident MI and

the Centers for Disease Control and Prevention’s WONDER online

database to obtain mortality rates in the U.S. (see Web Resources;

Tables S3 and S4). Because of the lack of data on age- and sex-spe-

cific rates of incident MI in the HE cohort, these analyses were

limited to EA and AA individuals aged 35–74 years.

Simulation-based power calculations for both race- and ethnic-

group-stratified and joint cohort analyses were performed via lo-

gistic regression models with 1,000 iterations. All statistical tests
The Ame
were two sided, and a p value of <0.05 was considered statistically

significant. All analyses were performed with R statistical

computing software (version 3.5.2).48 A detailed list of QC

pipelines and statistical packages used in this study is provided

in Table S5.
Results

Characteristics of the eMERGE Phase III Genotyped

Cohort

After implementation of the CHD phenotyping algorithm

and quality-control measures, our study cohort consisted

of 55,735 participants (mean age 48 5 14 years, 58% fe-

male), including 45,645 non-Hispanic EA, 7,597 non-His-

panic AA, and 2,493 HE individuals from 10 eMERGE sites.

In comparison to the EA cohort, the AA and HE cohorts

were younger and included a higher proportion of women.

Additional characteristics of the study cohorts are shown

in Table 1. During a median follow up of 11.1 years (inter-

quartile range [IQR] 6.0–17.5 years), 2,652 (4.8%) incident

CHD events were noted. Distributions of PRSs stratified by

race, ethnicity, and CHD status are shown in Figures S2–S5.

Association Results for CHD

In EA individuals, restricted PRSs and genome-wide PRSs

were associated with up to 1.20-fold and 1.53-fold

increased risk of incident CHD per 1 SD increase, respec-

tively (Table 2). Models that included genome-wide

PRSs had higher c-indices than did models with restricted

PRSs (0.719 versus 0.697–0.698). Estimated HRs were

similar to the original reports, suggesting good generaliz-

ability among different EA cohorts (Table S6).

In AA individuals, HRs for all PRSs were lower than

in EA individuals (Table 2). All PRSs except PRSTikkanen
(pinteraction ¼ 0.39) showed statistically significant heteroge-

neity of effect in AA individuals in reference to the EA

cohort (pinteraction; PRSTada, 0.02; PRSLDPred, 1.6 3 10�4;

PRSmetaGRS, 2.9 3 10�3). Genome-wide PRSs were more

strongly associated with incident CHD (HR per 1 SD in-

crease; 1.19–1.27, p % 2.2 3 10�3) than were restricted

PRSs (HR per 1 SD increase; 1.05–1.11, p R 0.07) and re-

sulted in a greater model discrimination (c-index;

genome-wide PRSs 0.656–0.663 versus restricted PRSs

0.649–0.652).

In HE individuals, as in the EA and AA cohorts, genome-

wide PRSs, especially PRSmetaGRS, were more strongly

associated with incident CHD. PRSLDPred was the only

PRS that demonstrated significant heterogeneity of effect

in the HE individuals compared to the EA individuals,

and there was a large difference in estimated HRs between

the two cohorts (pinteraction ¼ 0.02). In contrast, PRSmetaGRS

had the strongest association with incident CHD (HR

1.53 per 1 SD increase) and the highest c-index in compar-

ison to other PRSs in the HE cohort (Table 2).

After adjustment for cardiovascular risk factors (diabetes,

hypertension, and hyperlipidemia) and statin use in Cox

models, we observed minimal attenuation in risk estimates
rican Journal of Human Genetics 106, 707–716, May 7, 2020 709



Table 1. Participant Characteristics

Characteristic EA (n ¼ 45,645) AA (n ¼ 7,597) HE (n ¼ 2,493)

Age, years (mean 5 SD) 49.0 5 14.1 43.6 5 12.5 41.1 5 13.2

Female, n (%) 25,301 (55.4) 5245 (69.0) 1590 (63.8)

Diabetes, n (%) 3388 (7.4) 875 (11.5) 292 (11.7)

Hypertension, n (%) 5561 (12.2) 1086 (14.3) 246 (9.9)

Hypercholesterolemia, n (%) 9702 (21.3) 1200 (15.8) 552 (22.1)

Statin use, n (%) 12,521 (27.4) 1045 (13.8) 201 (8.1)

Incident CHD events, n (%) 2221 (4.9) 311 (4.1) 120 (4.8)

Age at incident CHD event, years (mean 5
SD)

59.5 5 9.5 56.0 5 10.4 57.9 5 10.1

Prevalent CHD cases, n (%) 5887 (12.9) 527 (6.9) 299 (12.0)

Follow-up in years, median (IQR) 11.7 (6.0–18.5) 9.2 (5.5–13.0) 10.4 (5.7–14.7)

Person years 595,896 75,370 27,191
for statistically significant PRSs across all racial and ethnic

groups (Table S7).

When we evaluated PRSs in analyses that included

all CHD cases, genome-wide PRSs were associated

with higher odds of CHD per 1 SD increase and higher

model c-indices than were the restricted PRSs across

the three groups (Table 3). Odds ratios (ORs) in the EA

and HE cohorts were comparable, and there was no evi-
Table 2. Hazard Ratios for Incident CHD per 1 SD Increase in PRS

HR (95% CI)a p Valuea Mo

EA

PRSTikkanen 1.18 (1.13–1.23) 6.54 3 10�14 0.6

PRSTada 1.20 (1.15–1.25) <2 3 10�16 0.6

PRSLDPred 1.50 (1.43–1.56) <2 3 10�16 0.6

PRSmetaGRS 1.53 (1.46–1.60) <2 3 10�16 0.6

AA

PRSTikkanen 1.11 (0.99–1.24) 0.07 0.6

PRSTada 1.05 (0.94–1.17) 0.41 0.6

PRSLDPred 1.19 (1.07–1.33) 2.2 3 10�3 0.6

PRSmetaGRS 1.27 (1.13–1.43) 4.1 3 10�5 0.6

HE

PRSTikkanen 1.14 (0.94–1.37) 0.19 0.6

PRSTada 1.13 (0.93–1.36) 0.22 0.6

PRSLDPred 1.16 (0.96–1.41) 0.13 0.6

PRSmetaGRS 1.53 (1.23–1.90) 1.1 3 10�4 0.6

aAge-as-time-scale Cox regressionmodels separate for each racial and ethnic group a
bc-indices for base models without PRSs across racial and ethnic groups: age-as-tim
cipal components.
cc-indices for base model þ PRSs for each racial and ethnic group.
dAge-as-time-scale Cox regression models on the joint cohort adjusted for sex, e
racial and ethnic group, and an interaction term with PRSs. ref, referent.
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dence of heterogeneity between these cohorts except

for PRSLDPred (pinteraction ¼ 0.03). In AA individuals, rela-

tive to the EA cohort, estimated ORs for CHD were signif-

icantly lower (pinteraction % 3.7 3 10�4) (Table 3).

PRSmetaGRS demonstrated the strongest association

with CHD in all three groups, resulting in different cumu-

lative risk trajectories when individuals were grouped into

tertiles of PRS distribution. Those in the bottom tertile of
delBase c-indexb ModelPRS c-index
c pinteraction

d

90 0.697 ref

90 0.698 ref

90 0.719 ref

90 0.719 ref

49 0.652 0.39

49 0.649 0.02

49 0.656 1.6 3 10�4

49 0.663 2.9 3 10�3

54 0.655 0.77

54 0.654 0.53

54 0.659 0.02

54 0.683 0.77

djusted for sex, eMERGE site, and first five ancestry-specific principal components.
e-scale Cox model with sex, eMERGE site, and first five ancestry-specific prin-

MERGE site, design matrix of first five ancestry-specific principal components,
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Table 3. Odds Ratios for (All) CHD per 1 Standard Deviation Increase in PRS

OR (95% CI)a p valuea ModelBase c-indexb ModelPRS c-index
c pinteraction

d

EA

PRSTikkanen 1.24 (1.21–1.28) <2 3 10�16 0.742 0.748 ref

PRSTada 1.28 (1.25–1.32) <2 3 10�16 0.742 0.750 ref

PRSLDPred 1.66 (1.62–1.71) <2 3 10�16 0.742 0.770 ref

PRSmetaGRS 1.73 (1.68–1.78) <2 3 10�16 0.742 0.772 ref

AA

PRSTikkanen 1.07 (0.99–1.16) 0.08 0.762 0.763 3.7 3 10�4

PRSTada 1.05 (0.98–1.14) 0.19 0.762 0.763 1.7 3 10�6

PRSLDPred 1.30 (1.21–1.41) 1.6 3 10�11 0.762 0.771 5.4 3 10�9

PRSmetaGRS 1.40 (1.30–1.52) <2 3 10�16 0.762 0.775 3.6 3 10�6

HE

PRSTikkanen 1.27 (1.12–1.42) 1.0 3 10�4 0.765 0.771 0.69

PRSTada 1.20 (1.06–1.35) 3.4 3 10�3 0.765 0.769 0.28

PRSLDPred 1.42 (1.25–1.61) 4.9 3 10�8 0.765 0.776 0.03

PRSmetaGRS 1.93 (1.67–2.22) <2 3 10�16 0.765 0.794 0.09

aMultivariable logistic-regression models, separate for each racial and ethnic group, adjusted for age at first EHR record, duration of EHR, sex, eMERGE site, and first
five ancestry-specific principal components.
bc-indices for base models without PRSs across racial and ethnic groups: multivariable logistic-regression model with age at first EHR record, duration of EHR, sex,
eMERGE site, and first five ancestry-specific principal components.
cc-indices for base model þ PRSs for each racial and ethnic group.
dMultivariable logistic regression models on the joint cohort adjusted for age at first EHR record, duration of EHR, sex, eMERGE site, design matrix of first five
ancestry-specific principal components, racial and ethnic group, and an interaction term with PRSs. ref, referent.
PRSmetaGRS distribution reached a cumulative CHD risk of

3.9%, 7.3%, and 6.9%, whereas those in the top tertile

reached 8.9%, 10.5%, and 11.8% risk by age 55 years in

the EA, AA, and HE cohorts, respectively (Figure 1). The cu-

mulative CHD risks estimated with other PRSs are shown

in Figures S6–S8.

Estimation of Absolute Risk of MI

Because genome-wide PRSs were more strongly associated

with CHD in both EA and AA groups, we used HRs per 1

SD increase in PRSmetaGRS to estimate 10-year absolute

risk of MI on the basis of age- and sex-specific rates of

incident MI and respective non-CHD mortality rates in

the U.S (Tables S3 and S4). Figure 2 depicts the distribution

of the estimated 10-year absolute risk of MI for EA and

AA participants aged 35–74 years as well as commonly rec-

ommended thresholds for initiation of statin therapy

(R7.5% or R10% 10-year risk).49,50 Even though PRSme-

taGRS associated less strongly with CHD in the AA cohort

than in the EA cohort (HR 1.27 in AA versus 1.53 in EA;

per 1 SD increase), higher incidence of MI in the AA cohort

across age and sex groups in the US (2.4–15.9 and 1.1–12.0

for AA men and women, respectively, versus 0.8–9.4

and 0.3–8.5 for EA men and women, respectively; per

1,000 person years) resulted in a higher distribution of pre-

dicted 10-year absolute risk of MI in AA individuals than in

EA individuals as determined from PRSmetaGRS. Adding
The Ame
PRSmetaGRS to the 10-year absolute risk estimates for MI re-

sulted in reclassification of risk categories in both EA and

AA individuals at ‘‘intermediate’’ risk (5%–7.5% 10-year

risk; Figure 3); 39.8% of the EA participants were reclassi-

fied to lower (<5%) and 24.1% were reclassified to higher

(R7.5%) 10-year risk groups, and 24.4% of the AA partici-

pants were reclassified to a lower risk group, and 19.5%

were reclassified to a higher risk group.

Power Calculations for PRS Associations

We assessed the statistical power for testing associations

of PRSs with CHD given our sample size and the number

of incident CHD events for each racial and ethnic group

in the eMERGE cohort. For an OR of 1.25 per 1 SD increase

in a restricted PRS for incident CHD in the EA cohort,

we assumed an OR of 1.20 in the HE cohort and 1.10 in

the AA cohort and expected that effect sizes would atten-

uate as a result of differences in the proportion of European

ancestry51 in these groups. We had 38% and 56% power

to detect an association with CHD and 52% and 8% power

to detect any heterogeneity of PRS effect in the AA and

HE cohorts compared to the EA cohort, respectively.

When testing a genome-wide PRS, and assuming a greater

effect size in each group (OR 1.50 in EA, 1.20 in AA, and

1.40 in HE), we had greater power to detect associations

with CHD (power 85% in AA and 97% in HE). To detect

heterogeneity of a genome-wide PRS effect in the AA
rican Journal of Human Genetics 106, 707–716, May 7, 2020 711



Figure 1. Cumulative Risk of CHD by PRSmetaGRS in Three Racial and Ethnic Groups
Cumulative risk of CHD by tertiles of PRSmetaGRS in European ancestry (EA), African ancestry (AA), and Hispanic ethnicity (HE) cohorts,
represented by the colors blue (left), orange (middle), and purple (right), respectively. Shaded regions denote 95% confidence intervals.
and HE cohorts with reference to the EA cohort, we had

95% power in the AA cohort and 11% in the HE cohort.

Discussion

In this study, we quantified the strengths of associations

of four published PRSs (derived largely from EA cohorts)

with CHD in the three major racial and ethnic groups in

the US. We replicated previously reported associations of

PRSs with CHD in EA individuals and demonstrated that

PRSs were similarly associated with CHD in HE individuals

but that the associations were significantly weaker in AA

individuals.

The generalizability of a PRS across ancestral and ethnic

groups depends on LD between the causal and the tagging

variant, frequencies of variants, and the genetic architec-

ture of the trait of interest in such groups.21,24,52–54 HE in-

dividuals in the US have a greater proportion of European

ancestry than do AA individuals51 and allele frequencies

similar to those of EA individuals, which might be why

PRS associations were less attenuated in this group. In AA

individuals, despite attenuation, genome-wide PRSs re-

mained significantly associated with CHD and had up to

�1.3-fold increased risk per 1 SD increase in PRS. Inclusion

of a large number of variants in the genome-wide PRSs

(albeit with effect size estimates derived from EA-based

GWAS) might have led to inclusion of variants associated

with CHD in both EA and non-EA groups, partially

capturing the risk of CHD through shared risk alleles.

Restricted PRSs include a much smaller number of

variants and therefore might not replicate well across

ancestries.23,55,56

A few studies investigated generalizability of genome-

wide PRSs in EA and non-EA cohorts. Wünneman et al.57

confirmed the association of PRSmetaGRS and PRSLDPred

with prevalent CHD in French-Canadian individuals

from three different cohorts. Khera et al.58 evaluated

PRSLDPred in a multiethnic cohort of 2,081 early-onset MI

cases and 3,761 population-based controls and found

attenuated but significant associations of the PRS with
712 The American Journal of Human Genetics 106, 707–716, May 7,
prevalent early-onset MI in minority groups—HE individ-

uals, AA individuals, and Asians. The ORs reported58

were higher than our estimates for the association of

PRSLDPred with CHD, possibly due to a stronger genetic

contribution to early-onset CHD.

We previously demonstrated that disclosure of a PRS

for CHD led to lower LDL-C levels11 in a randomized clin-

ical trial and that such disclosure was associated with

higher likelihood of information seeking and sharing on

cardiovascular disease.59 Other studies have demonstrated

that statins and healthy lifestyle factors reduce adverse

CHD events in those with a high PRS for CHD.60,61

Although PRSs are beginning to be used in clinical prac-

tice,11,62,63 their application to non-EA individuals is un-

clear. Until race- and ancestry-specific PRSs become avail-

able, our results suggest that EA-derived genome-wide

PRSs for CHD could be adapted for use in AA individuals

while taking into account race-specific CHD risk.

When using PRSs in different racial and ethnic groups,

one must keep in mind that epidemiological differences

in CHD risk across these groups will influence estimates

of absolute risk. In our study, relative to the EA cohort, a

lower yet substantial proportion of AA participants were re-

classified from the intermediate to high 10-year risk cate-

gory (24.1% versus 19.5%) on the basis of PRSmetaGRS.

Despite a narrower relative risk gradient in the AA cohort,

genome-wide PRSs could facilitate decision-making

regarding prevention and treatment based on estimates

of absolute risk of CHD. Individuals likely to be impacted

the most would be those at intermediate risk of CHD,

where initiation of lipid-lowering therapy is subject to un-

certainty, and those at the extremes of PRS distribution

because their risk category is more likely to change. Large

and diverse cohorts are needed for the construction of

both relative and absolute risk models as well as for evalu-

ation of model validity and calibration46 prior to clinical

implementation.

The development of minority-specific PRSs based on

empirical data has been challenging because these groups

are underrepresented in genomic studies;26 in 2009
2020
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Figure 2. Distributions of the Absolute
CHD Risk Predicted by PRSmetaGRS in EA
and AA Individuals
Distributions of predicted 10-year absolute
risk of MI based on PRSmetaGRS in EA and
AA participants aged 35–74 years. (A) shows
distribution of risk in men, whereas (B)
shows the distribution of risk in women.
Dotted vertical lines represent commonly
accepted risk thresholds for statin therapy
(R7.5% and R10% 10-year absolute CHD
risk).
�96% of GWAS participants were of European ancestry,

although this had decreased to �80% by 2016.64 Efforts

are underway to increase racial and ethnic diversity in

research cohorts such as the National Heart, Lung, and

Blood Institute’s Trans-Omics for Precision Medicine

(TOPMed), the National Institutes of Health’s All of Us pro-

gram, and the Million Veteran Program65 from the Depart-

ment of Veterans Affairs healthcare system. Future large

multiethnic cohorts will enable construction of racial-

and ethnicity-specific PRSs, potentially leading to perfor-

mances comparable to what is currently available for EA

cohorts.
Study Limitations

Several limitations of our study should be noted. The AA

and HE cohorts were from a limited number of geographic

regions and institutions, were smaller in sample size, and

the number of CHD events was lower than in the EA

cohort, potentially reducing the precision of risk estimates.

We did not have sufficient numbers of individuals of Asian

or Native American ancestry to perform the relevant

comparative analyses. For time-to-event analyses, follow-

up was initiated from the first EHR record because of

incomplete data on the DNA sample collection date.
Figure 3. Reclassification of CHD Risk Category by PRSmetaGRS in
EA and AA Individuals
Reclassification rates after incorporating PRSmetaGRS in individuals
aged 35–74 and at intermediate 10-year risk of MI (5%–7.5%)
calculated on the basis of age, sex, race- and ethnicity-specific inci-
dence of MI, and corresponding non-CHD mortality rates as
competing risks. Note: Conventional CHD risk factors (other
than age and sex) were not included in the risk estimates.

The American Journal of Huma
CHD events occurring between first

EHR record and the DNA sample collec-

tion date can bias the hazard ratios to-
ward the null because individuals who were healthy

enough to survive until blood collection for genotyping

are included. Smoking status and family history of CHD

were not available as structured data in EHR systems,

possibly resulting in incomplete adjustment for these risk

factors in our analyses.

Conclusion

The results of our study represent one of the largest compar-

ative analyses of PRSs for CHD in three major racial and

ethnic groups in the US. Genome-wide PRSs were more

strongly associated with CHD than were restricted PRSs,

and PRSmetaGRS, had the strongest association with CHD in

all three groups. The strengths of associations of PRSs with

CHD were similar in EA and HE individuals but lower for

AA individuals. On the basis of a genome-wide PRS, a sub-

stantial proportion of individuals at intermediate risk for

CHD were reclassified to either a lower or higher absolute

risk category. Our results highlight the potential utility of

PRSs for CHD in the clinical setting and suggest that until

ancestry- and ethnicity-specific PRSs become available, a

genome-widePRScouldbeadapted foruse inAA individuals.
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