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CKD affects 10–16% of the general population and has high 
morbidity and mortality1,2. In the USA, CKD dispropor-
tionally affects African Americans (16.3%) when compared 

to European Americans (12.7%), Asian Americans (12.9%) or 
Hispanic Americans (13.6%)3. CKD stage 3 or greater is defined 
by a chronic loss of glomerular filtration rate (GFR) to below 
60 ml min 1.73 m−2. Because this definition is based on estimated 
kidney function rather than markers of specific kidney injury, it 
captures an etiologically heterogeneous set of primary and second-
ary kidney disorders. As expected for a highly heterogeneous trait, 
CKD has a complex determination with both genetic and environ-
mental contributions. The observational heritability of CKD in the 

largest analysis of medical records ranged from 25 to 44%4. These 
estimates were generally consistent with smaller family-based 
studies of CKD and GFR5–7.

High heritability of CKD is attributed to both monogenic8,9 and 
polygenic causes10,11. Moreover, in individuals of African ancestry, 
two common risk alleles (G1 and G2) in the APOL1 gene convey a 
large effect on the risk of kidney disease12,13. While heterozygotes 
for the G1 or G2 alleles appear to be protected from Trypanosoma 
sleeping sickness, kidney disease risk is conveyed under a reces-
sive model in carriers of two risk alleles (G1G1, G2G2 or G1G2). 
Because of the selective pressure exerted by endemic trypanosomal 
species in certain parts of eastern and western Africa, G1 and 
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G2 alleles are observed almost exclusively in individuals whose  
ancestry can be linked to those areas14,15. In the US population, 
the frequency of APOL1 risk genotypes is estimated at approxi-
mately 15% in African Americans, 0.5–2% in Hispanic Americans 
and <0.01% in Europeans16. These differences may be contrib-
uting to the higher prevalence of CKD in African Americans; 
however, additional non-APOL1 genetic risk factors have not yet  
been elucidated.

GPS have emerged as promising tools for genetic risk stratifica-
tion that can enhance traditional risk models for complex diseases. 
This approach has been applied to a variety of traits, including 
heart disease17,18, diabetes18,19, hypertension20,21, obesity22, schizo-
phrenia23–25 and cancers26–31. One of the major limitations of the 
GPS approach is that existing GWAS are based predominantly on 
European cohorts; thus, most GPS do not perform well in more 
diverse cohorts or in individuals with admixed ancestry32. Similar 
to other complex traits, GWAS for kidney function involved pre-
dominantly European cohorts. The latest study involved 765,348 
participants, 75% of which were European, 23% East Asian, 2% 
African American and <1% Hispanic11. Notably, this study did not 
capture the effects of APOL1 risk variants because of their recessive 
inheritance and very low frequencies in non-African populations.

The objective of the present study was to test if the existing 
knowledge on polygenic contributions to kidney function is suf-
ficient to build a clinical risk predictor for moderate-to-advanced 
CKD with adequate performance across diverse ancestral groups. 
We specifically aimed to design, optimize and test a new GPS for 
clinical risk prediction of kidney disease that maximizes perfor-
mance across ancestries. We combined information on APOL1 risk 
genotypes with the latest GWAS for kidney function to formulate 
a GPS that can reliably discriminate moderate-to-advanced CKD 
(stage 3 or greater) from population controls. In our approach, we 
took advantage of the power of the existing GWAS for a quantitative 
biomarker of kidney function (serum creatinine-based estimated 
GFR (eGFR)) to predict a disease state. To demonstrate transferabil-
ity across different ancestral groups, we performed rigorous testing 
of our GPS in 15 independent and ancestrally diverse case-control 
cohorts according to ClinGen standards33.

Results
GPS optimization. The flowchart summary of our overall strategy 
is provided in Fig. 1. In the GPS optimization step, a total of 19 
candidate scores were generated using 1000 Genomes (all popula-
tions) linkage disequilibrium (LD) reference and summary statistics 
from GWAS for eGFR11. We then used a large optimization dataset 
consisting of 70% of European UK Biobank (UKBB) participants 
to select the best performing model (Table 1 and Supplementary 
Table 1). The best model was based on the P value thresholding 
(P + T) method and involved 41,426 markers with nonzero weights 
selected based on r2 = 0.2 and P = 0.03. The score was standardized 
to zero mean and unit variance based on ancestry-matched popu-
lation controls. In the optimization dataset, the polygenic compo-
nent of the score explained 4% of the variance (R2), with 1 s.d. of 
the score increasing CKD risk by 86% (odds ratio (OR) = 1.86, 95% 
confidence interval (CI) = 1.83–1.89, P < 1.00 × 10−300) after control-
ling for age, sex, diabetes, center, genotyping/imputation batch and 
genetic ancestry (Supplementary Table 1).

The second optimization step involved testing for independent 
contributions of APOL1 risk genotypes and included 7,158 UKBB 
participants of genetically defined African ancestry (967 cases and 
6,191 controls). In the model adjusted for age, sex, diabetes, batch 
and principal components (PCs) of ancestry, we observed statisti-
cally significant independent effects of the polygenic component 
(OR per s.d. = 1.16, 95% CI = 1.09–1.25, P = 1.00 × 10−4) and the 
recessive APOL1 risk genotype (OR = 1.19, 95% CI = 1.01–1.38, 
P = 4.00 × 10−2), but no significant multiplicative interactions 
between the two predictors (P interaction = 0.29) (Supplementary 
Table 2). Given these findings, we subsequently modeled APOL1 
risk as additive to the polygenic component, assuming that the 
APOL1 risk genotype effects are approximately equivalent to 1 s.d. 
of the standard-normalized polygenic risk score (PRS) (the weight 
of 1 was used because the β per s.d. of the PRS and the β for the 
APOL1 risk genotype were comparable in magnitude).

Population differences in GPS distributions. We next exam-
ined the distributions of the polygenic risk component (without 
APOL1) and the final combined GPS (with APOL1) in the reference  

Summary statistics
CKDGen GWAS for eGFR

1000 Genomes reference panel
All populations (n = 2,504)

GPS derivation and optimization Derive and select the best GPS
UKBB European ancestry (70%)

6,573 cases, 170,635 controls (70%)
Best GPS: P + T(r 2 = 0.2, P = 0.03)

UAB (African American only)

HyperGEN 109 cases, 619 controls

REGARDS 1,055 cases, 4,314 controls

WPC 308 cases, 140 controls

GenHAT 924 cases, 2,454 controls

eMERGE-III 

European 10,572 cases, 8,030 controls

African American 1,143 cases, 1,600 controls

East Asian 96 cases, 97 controls

Latinx 382 cases, 533 controls

UKBB

European 2,759 cases, 72,968 controls (30%)

East Asian 26 cases, 1,525 controls 

Southwest Asian 209 cases, 6,258 controls 

GPS validation

BioMe

European 870 cases, 1,851 controls 

African American 729 cases, 1,149 controls

Latinx 1,004 cases, 1,706 controls

East Asian 61 cases, 353 controls 

APOL1 effects derivation
UKBB African ancestry

967 cases, 6,191 controls

Fig. 1 | Overview of the study design. The CKD GPS was designed based on the CKDGen GWAS summary statistics for eGFR and a cosmopolitan LD 
reference panel of 1000 Genomes (all populations); optimization was performed in two stages using UKBB participants of European (optimization 1) and 
African (optimization 2) ancestries. GPS performance validation was conducted in 15 additional independent testing cohorts of diverse ancestries.
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populations of 1000 Genomes. We detected significant differences 
in the mean polygenic risk across populations (Fig. 2; analysis of 
variance (ANOVA) P = 3.40 × 10−154), with a notable shift toward 
higher average risk in African ancestry compared to all other popu-
lations (P = 4.92 × 10−163). This shift was even more pronounced 
after including APOL1 risk genotype information in the combined 
GPS (P = 1.58 × 10−168). These results suggest that the PRS for CKD 
is considerably higher in African compared to non-African popula-
tions independent of APOL1.

Given that the weights of the score equation are fixed, we hypoth-
esized that the observed distributional differences were driven by a 
higher frequency of CKD risk alleles in African genomes. Therefore, 
we examined the overall frequency spectrum of the CKD risk alleles 
included in the GPS between European and African reference popu-
lations (Extended Data Fig. 1). First, we observed a greater number 
of risk alleles in the African compared to European populations of 
1000 Genomes at the extremes of the frequency spectrum (risk allele 
frequencies (RAFs) < 0.01 or >0.99). This observation was expected 
due to the minor allele frequency (MAF) filter of 1% used in the 
European GWAS discovery cohorts. Second, across all variants 
included in the score, the mean difference in RAF between African 
and European populations was positive (that is, greater than the 
expected mean of 0), indicating a higher average frequency of risk 
alleles in African genomes. We further observed that the risk alleles 
with the largest weights (effect sizes in the GWAS) had a signifi-
cantly higher frequency in African genomes compared to those with 
low (P = 0.025) or intermediate effect sizes (P = 0.018) (Extended 
Data Fig. 1d). Thus, it appears that the observed GPS distributional 
shifts between European and African populations are driven pre-
dominantly by frequency differences of large effect risk alleles.

GPS testing in cohorts of European ancestry. We next tested 
the final GPS in 3 European cohorts, including the remain-
ing 30% of the UKBB (2,759 cases and 72,968 controls) and 2 
large US-based European ancestry cohort—Electronic Medical 
Records and Genomics Phase III (eMERGE-III) (10,572 cases and 
8,030 controls) and BioMe (870 cases and 1,851 controls). In the  

combined meta-analysis, the GPS exhibited highly reproducible 
performance, with pooled OR per s.d. = 1.46, 95% CI = 1.43–1.48, 
P < 1.00 × 10−300 (Supplementary Table 3). While the UKBB testing 
cohort had nearly identical performance metrics to the optimiza-
tion cohort, the effect sizes were attenuated slightly in the US-based 
cohorts. The frequency of the APOL1 risk genotype was extremely 
low (Supplementary Table 4); thus, its effect was negligible in the 
European cohorts.

GPS testing in cohorts of African ancestry. The GPS was tested 
in 6 independent African ancestry cohorts, including eMERGE-III 
(1,143 cases and 1,600 controls), BioMe (729 cases and 1,149 con-
trols), Hypertension Genetic Epidemiology Network (HyperGEN) 
(109 cases and 619 controls), REasons for Geographic and Racial 
Differences in Stroke (REGARDS) (1,055 cases and 4,314 controls), 
Genetics of Hypertension Associated Treatments (GenHAT) (924 
cases and 2,454 controls) and Warfarin Pharmacogenomics Cohort 
(WPC) (308 cases and 140 controls). In the combined meta-analysis, 
the GPS had pooled an OR per s.d. of 1.32, 95% CI = 1.26–1.38, 
P = 1.78 × 10−33 (Table 2 and Supplementary Table 5). The inclusion 
of the APOL1 risk genotype considerably enhanced CKD risk pre-
diction across all African ancestry cohorts, substantially improving 
tail cutoff discrimination, that is, the risk for the top 2% of indi-
viduals was approximately 1.80-fold higher in the model without 
APOL1 and 2.70-fold higher in the model with APOL1 compared to 
the remaining 98% of individuals (Table 3). The effects of the GPS 
stratified by APOL1 risk genotype across all six African ancestry 
cohorts are depicted in Fig. 3a.

GPS testing in admixed ancestry Latinx cohorts. The GPS was 
also tested in 2 admixed ancestry Latinx cohorts from eMERGE-III 
(382 cases and 533 controls) and BioMe (1,004 cases and 1,706 
controls). The combined meta-analysis of these cohorts resulted 
in a pooled OR per s.d. = 1.42, 95% CI = 1.29–1.57, P = 4.56 × 10−12 
(Supplementary Table 6). Similar to African ancestry cohorts, the 
inclusion of APOL1 risk genotypes in the GPS improved risk pre-
diction in these admixed cohorts (Table 3).

Table 1 | Summary of study cohorts used for GPS optimization and testing

Study Sub-cohort CKD cases (n = 27,787) Controls (n = 280,423) Female (%) Diabetes (%) Mean age 
(years)

uKBB Optimization 1: European ancestry (70%) 6,573 170,635 54 5 56.65

Optimization 2: African ancestry 967 6,191 58 12 51.77

Testing 1: European ancestry (30%) 2,759 72,968 54 5 56.64

Testing 2: East Asian ancestry 26 1,525 68 5 52.37

Testing 3: South Asian ancestry 209 6,258 46 18 53.32

eMERGE Testing 4: European ancestry 10,572 8,030 52 35 71.23

Testing 5: African ancestry 1,143 1,600 70 40 66.76

Testing 6: Latinx admixed ancestry 382 533 64 38 66.77

Testing 7: East Asian ancestry 96 97 59 27 72.81

uAB Testing 8: WPC: African ancestry 308 140 58 50 61.48

Testing 9: REGARDS: African ancestry 1,055 4,314 63 31 62.30

Testing 10: GenHAT: African ancestry 924 2,454 58 45 65.74

Testing 11: HyperGEN: African ancestry 109 619 62 31 52.23

BioMe Testing 12: European ancestry 870 1,851 38 14 61.87

Testing 13: African ancestry 729 1,149 56 32 61.65

Testing 14: Latinx admixed ancestry 1,004 1,706 38 33 62.04

Testing 15: East Asian ancestry 61 353 41 15 55.75

UAB, University of Alabama.
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GPS testing in cohorts of Asian ancestry. We tested GPS in 4 
diverse Asian cohorts including UKBB southwest Asian (209 
cases and 6,258 controls), UKBB East Asian (26 cases and 1,525 
controls), eMERGE-III East Asian (96 cases and 97 controls) and 
BioMe East Asian (61 cases and 353 controls) cohorts. The com-
bined meta-analysis resulted in a pooled OR per s.d. = 1.68, 95% 
CI = 1.45–2.06, P = 7.11 × 10−13 (Supplementary Table 7). APOL1 
risk genotypes were absent in the Asian cohorts; thus, the modeled 
risk was entirely attributable to the polygenic component.

Tail discrimination performance by ancestry. For each individual 
testing cohort, we derived risk estimates comparing extreme tails 
of the risk score distribution to all other cohort members and esti-
mated sensitivity and specificity for a range of tail cutoffs (20, 10, 5, 
2 and 1%). These metrics were meta-analyzed by ancestry and are 
summarized in Table 2, Fig. 3b and Supplementary Tables 3 and 5–7. 
Depending on ancestry, the top 2% tail of the risk score distribution 
was associated with 2.66–4.93-fold higher risk of CKD than for the 
remaining 98% of individuals, including in European (OR = 3.60, 
95% CI = 3.11–4.17, P = 4.26 × 10−66), African (OR = 2.66, 95% 
CI = 2.01–3.51, P = 4.93 × 10−12), admixed Latinx (OR = 4.93, 95% 
CI = 2.46–9.89, P = 6.69 × 10−6) and Asian ancestry (OR = 3.81, 95% 
CI = 1.91–7.59, P = 1.35 × 10−4) cohorts. We consider this cutoff as 
clinically meaningful because this degree of risk is approximately 
equivalent to the risk reported for a family history of kidney dis-
ease34. In Supplementary Table 8, we summarize various metrics of 
diagnostic performance for this cutoff by ancestry, including sen-
sitivity, specificity, and prevalence-adjusted positive and negative 

predictive values. For comparison, we provide similar metrics for 
the top 5% of the risk score distribution.

Ancestry adjustments and calibration. We next compared the 
effect of two different ancestry adjustment methods on the GPS 
distributions in the 1000 Genomes, eMERGE-III and UKBB test-
ing cohorts (Fig. 2 and Extended Data Fig. 2). Adjusting for mean 
only (method 1; Methods) eliminated major distributional shifts 
by ancestry, but did not fully resolve the observed tail differences. 
The ancestry adjustment method 2 (adjusting for both mean and 
variance) resulted in comparable shapes of the GPS distributions 
by ancestry and facilitated the selection of a single trans-ancestry 
tail cutoff. Both methods resulted in comparably good risk score 
calibration when applied to the combined multiethnic eMERGE-III 
dataset (Extended Data Fig. 3). However, as a trade-off, the ancestry 
adjustments reduced tail discrimination at extreme cutoffs as sum-
marized in Supplementary Table 9. This trade-off appeared most 
pronounced for method 2, as well as for more admixed cohorts 
(African American and Latinx).

Sensitivity analyses. The use of race in clinical predictive models has 
been scrutinized and a new Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) 2021 equation without a race variable 
has recently been proposed35. Therefore, we performed sensitivity 
analyses to examine the effect of the new equation on GPS perfor-
mance in eMERGE-III, our largest and most diverse testing dataset. 
The CKD-EPI 2021 equation without race35 was applied to redefine 
cases and controls across all eMERGE-III participants. As expected, 
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with APOL1 (method 1). f, Ancestry-adjusted combined GPS with APOL1 (method 2).
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the new equation reduced the number of CKD cases (and increased 
the numbers of controls) in the European, Latinx and East Asian 
cohorts, while the opposite effect was observed in the African 
ancestry cohort. Importantly, across all ancestral groups, GPS had 
comparable performance between the new and old phenotype 
definitions, with a notable trend for improved performance in the 
African ancestry cohort (Supplementary Table 10a).

We additionally tested the effect of using self-reported race/
ethnicity versus genetic (PC-based) ancestry to define our test-
ing cohorts. Despite smaller sample sizes of the cohorts defined 
by self-report, we observed no major performance differences 
between self-report and genetic ancestry-defined cohorts. Similarly, 
the use of the 2021 CKD-EPI eGFR equation to define CKD in 
self-report-based cohorts resulted in comparable performance to 
the 2009 equation, with a similar trend for improved performance 
in African ancestry cohorts (Supplementary Table 10b).

Lastly, using our multiethnic eMERGE-III cohorts, we compared 
the performance of our GPS to an alternative score recently pro-
posed by Yu et al.36 (Supplementary Table 11). This score was based 
on a GWAS with a higher proportion of Europeans, did not include 
the APOL1 risk genotype and was not optimized for trans-ethnic 
performance. Given these differences, the score by Yu et al.36 per-
formed better in cohorts of European ancestry but was less predic-
tive in cohorts of African or Asian ancestry. Notably, the African 

ancestry distribution of the GPS by Yu et al.36 was also shifted 
toward higher values compared to other ancestries, confirming 
that the observed shift is independent of a specific method used to 
design the score (Extended Data Fig. 4).

Discussion
We developed a GPS for CKD that captures polygenic determinants 
of kidney function emerging from recent GWAS studies and pre-
dicts CKD across four ancestry groups. Our score was designed 
and validated for individual-level risk prediction according to 
the ClinGen guidelines33. The score had consistent performance 
despite heterogenous genotyping platforms and imputation meth-
ods employed in our testing studies. We also developed continuous 
ancestry adjustment methods to allow for cross-ancestry standard-
ization of the score. Importantly, our testing studies demonstrated 
that extreme tails of the risk score distribution (top 2%) conveyed 
approximately a threefold increase in the disease risk across all 
ancestries. This magnitude of risk is equivalent to a positive family 
history of kidney disease34.

In this study, we were unable to assess if the GPS conveys kid-
ney disease risk independently of positive family history, mainly 
because family history is poorly captured in electronic health 
records and thus it is not routinely available for large electronic 
health record-linked biobanks37. However, prior cohort studies in 

Table 2 | The performance metrics of the GPS in the testing cohorts meta-analyzed by ancestry

Meta-analysis Cases/controls OR per s.d. (95% CI), P AuC (crude) PRS threshold OR (95% CI), P

European (3 
cohorts)

14,201/82,849 1.46 (1.43–1.48), 
P < 1.00 × 10−300

0.81 (0.62) Top 20% versus other 80% 2.30 (2.17–2.44), P = 1.65 × 10−174

Top 10% versus other 90% 2.59 (2.40–2.78), P = 1.27 × 10−142

Top 5% versus other 95% 2.92 (2.65–3.21), P = 2.64 × 10−104

Top 2% versus other 98% 3.60 (3.11–4.17), P = 4.26 × 10−66

Top 1% versus other 99% 4.46 (3.66–5.44), P = 7.82 × 10−50

African (6 cohorts) 4,268/10,276 1.32 (1.26–1.38), P = 1.78 × 10−33 0.78 (0.57) Top 20% versus other 80% 1.65 (1.49–1.82), P = 1.17 × 10−22

Top 10% versus other 90% 1.84 (1.61–2.09), P = 9.26 × 10−20

Top 5% versus other 95% 2.06 (1.72–2.47), P = 2.11 × 10−15

Top 2% versus other 98% 2.66 (2.01–3.51), P = 4.93 × 10−12

Top 1% versus other 99% 3.51 (2.37–5.22), P = 4.21 × 10−10

Latinx (2 cohorts) 1,386/2,239 1.42 (1.29–1.57), P = 4.56 × 10−12 0.88 (0.62) Top 20% versus other 80% 1.88 (1.50–2.37), P = 5.46 × 10−8

Top 10% versus other 90% 2.26 (1.66–3.06), P = 1.56 × 10−7

Top 5% versus other 95% 2.67 (1.75–4.07), P = 4.96 × 10−6

Top 2% versus other 98% 4.93 (2.46–9.89), P = 6.69 × 10−6

Top 1% versus other 99% 6.61 (2.46–17.75), P = 1.77 × 10−4

Asian (4 cohorts) 392/8,233 1.68 (1.45–2.06), P = 7.11 × 10−13 0.91 (0.61) Top 20% versus other 80% 2.42 (1.81–2.27), P = 4.39 × 10−9

Top 10% versus other 90% 2.95 (2.06–4.20), P = 2.43 × 10−9

Top 5% versus other 95% 3.56 (2.26–5.60), P = 4.09 × 10−8

Top 2% versus other 98% 3.81 (1.91–7.59), P = 1.35 × 10−4

Top 1% versus other 99% 8.46 (3.70–19.3), P = 4.00 × 10−7

All 15 cohorts 20,247/103,597 1.44 (1.42–1.47), 
P < 1.00 × 10−300

0.81 (0.61) Top 20% versus other 80% 2.23 (2.11–2.35), P = 8.02 × 10−195

Top 10% versus other 90% 2.31 (2.17–2.45), P = 2.75 × 10−168

Top 5% versus other 95% 2.58 (2.39–2.79), P = 2.02 × 10−123

Top 2% versus other 98% 3.26 (2.89–3.67), P = 3.37 × 10−84

Top 1% versus other 99% 4.61 (3.84–5.53), P = 1.14 × 10−60

For performance testing in individual cohorts, please refer to Supplementary Tables 4–7. The OR for the model was adjusted for age, sex, diabetes, PCs of ancestry and genotyping array or clinical site.  
The s.d. represents the s.d. of the GPS distribution in controls. The AUC for the model was adjusted for age, sex, diabetes, PCs of ancestry and genotyping array or clinical site. Crude signifies the AUC for 
GPS alone without any covariates.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature MediciNe

cardiovascular disease38–41 and breast cancer42 clearly demonstrate 
that PRS for these conditions capture independent information 
from family history or traditional risk factors. For CKD, this spe-
cific question will be addressed by a prospective eMERGE-IV study 
testing the performance of our score against family history collected 
using MeTree software43. Additional studies are also needed to test if 
our GPS modifies penetrance of monogenic kidney disorders, simi-
lar to the effects reported for tier 1 genetic disorders44.

Beyond enhanced disease screening of asymptomatic individu-
als, other potential applications of the GPS may include improved 
risk stratification of potential living kidney donors or enhanced 
quality assessment of deceased donor organs in the setting of kid-
ney transplant45. The hypothesis that a donor polygenic risk is rel-
evant to kidney allograft outcomes is to be tested but is supported 
by the fact that most candidate causal genes from GWAS for kid-
ney function map to kidney cell types46,47. The clinical practice 
and local guidelines for genetic screening of living donors con-
tinue to evolve rapidly, but presently only monogenic causes of 
kidney disease and APOL1 risk genotypes are being considered48. 

Our results stress an urgent need to test the utility donor GPS in 
this setting to better assess its impact on living donation risks as 
well as allograft outcomes.

Although our score is based on a multiethnic GWAS for eGFR, 
the allelic effect estimates are heavily biased by the predominant 
European-Asian composition of the discovery GWAS that included 
75% European, 23% East Asian, 2% African and only <1% admixed 
ancestry Latinx participants. Because there are currently no stud-
ies of similar size performed in African and admixed ancestry 
participants, we were unable to improve the accuracy of effect esti-
mates for these populations and our model assumed fixed effects 
across ancestries. We used a diverse LD reference to improve the 
trans-ethnic performance of the score and we further enhanced the 
model by including African ancestry-specific recessive APOL1 risk 
genotypes known to have large effects on the risk of kidney disease. 
We demonstrated that APOL1 risk genotypes (coded under a reces-
sive model) have an additive effect with the polygenic component 
and significantly enhance case-control discrimination in African 
and admixed ancestry Latinx cohorts.

Several important limitations of this work need to be discussed. 
First, we are most limited by the lack of large-scale GWAS for kid-
ney function in non-European populations, as well as the small sizes 
of existing cohorts that could be used for performance optimization 
in non-Europeans49. Thus, the largest cohorts presently available for 
robust risk score optimization are also of predominantly European 
ancestry. The assumption of fixed allelic effects across different 
ancestral groups is likely inaccurate because many disease-related 
lifestyle factors and environmental exposures correlated with ances-
try could modify allelic effects. Accordingly, the overall tail discrim-
ination of the score was lower in African than in European or Asian 
ancestry cohorts with notably lower sensitivity for the top 2% GPS 
cutoff. Although it is not possible to overcome this limitation in 
the present study, our GPS approach could be refined by including 
larger non-European GWAS studies for eGFR or CKD once avail-
able in the future.

Second, the performance comparisons between different ances-
tral groups could be biased by differences in genotyping platforms 
and the ascertainment methods employed by various biobanks. For 
example, the UKBB represents a population-based cohort recruiting 
European participants in the 40–60 age group, while the eMERGE 
and BioMe case-control cohorts are ascertained in older patients 
with more comorbidities receiving care at tertiary US medical cen-
ters. The inclusion of older participants in our testing cohorts might 
lead to some case misclassification due to age-related kidney func-
tion decline. To mitigate this issue, we excluded CKD stage 2 from 
all performance tests in our study. However, stage 3a may also be 
prone to residual misclassification50, resulting in risk underestima-
tion for cohorts consisting of older participants.

Third, the ancestry definitions varied in our testing cohorts. 
While in eMERGE and UKBB ancestry was defined agnosti-
cally using genetic approaches, all other testing cohorts relied on 
self-report. Despite these differences, the risk score performance 
was similar across all cohorts and our sensitivity analyses demon-
strated no major change in performance when cohorts were defined 
by genetics versus self-report. Notably, the African ancestry cohorts 
included in this study were predominantly of West African descent. 
Due to the lack of relevant genetic cohorts, we were unable to test 
GPS performance in other African populations, such as from East 
or South Africa. These populations have a relatively low frequency 
of APOL1 risk alleles, which could potentially dampen the score 
effects; however, follow-up studies are needed for these populations. 
Additional GPS validation is also needed in Native American and 
Pacific Islander populations that were not represented in this study.

Fourth, by design, our score models polygenic effects from 
GWAS for kidney function as approximated by eGFR from serum 
creatinine (filtration marker) rather than CKD itself. We recognize 

Table 3 | Added value APOL1 risk genotype to PRS components 
in predicting CKD using the extreme tail (98th percentile) of 
the risk score distribution in African American (4,268 cases and 
10,276 controls) and admixed Latinx (1,386 cases and 2,239 
controls) cohorts

Cohorts APOL1 risk 
genotype OR 
(95% CI), P

Top 2% PRS 
without APOL1 
OR (95% CI), P

Top 2% PRS 
with APOL1 OR 
(95% CI), P

African ancestry

 eMERGE 1.64 (1.42–1.86), 
P = 2.00 × 10−5

2.10 
(1.46–2.74), 
P = 2.00 × 10−2

2.60 
(1.38–4.90), 
P = 3.10 × 10−3

 BioMe 1.38 (1.28–1.48), 
P = 3.30 × 10−10

2.70 
(1.93–3.47), 
P = 1.00 × 10−2

5.75 
(4.96–6.54), 
P = 1.00 × 10−5

 UAB HyperGEN 1.71 (0.93–3.12), 
P = 8.20 × 10−2

2.22 
(0.59–8.44), 
P = 2.40 × 10−1

1.64 
(0.43–6.20), 
P = 4.65 × 10−1

 UAB REGARDS 1.35 (1.08–1.77), 
P = 6.90 × 10−3

1.26 
(0.76–2.07), 
P = 3.60 × 10−1

1.56 
(0.97–2.59), 
P = 6.52 × 10−2

 UAB GenHAT 1.43 (1.12–1.81), 
P = 3.20 × 10−3

2.80 
(1.64–4.77), 
P = 1.50 × 10−4

4.38 
(2.56–7.50), 
P = 6.80 × 10−8

 UAB WPC 1.93 (1.07–3.49), 
P = 2.90 × 10−2

– 1.59 
(0.28–8.73), 
P = 5.96 × 10−1

 Meta-analysis 1.46 (1.38–1.54), 
P = 2.70 × 10−19

1.76 (1.41–2.20), 
P = 5.90 × 10−7

2.66 
(2.01–3.51), 
P = 4.93 × 10−12

Latinx admixed ancestry

 eMERGE 16.5 (5.70–48.1), 
P = 7.10 × 10−4

1.41 
(0.47–4.24), 
P = 5.40 × 10−1

6.89 
(1.60–29.07), 
P = 9.78 × 10−3

 BioMe 1.17 (1.10–1.24), 
P = 2.40 × 10−6

2.72 
(1.97–3.47), 
P = 1.00 × 10−2

4.48 
(3.69–5.27), 
P = 2.10 × 10−4

 Meta-analysis 1.18 (1.09–1.27), 
P = 4.40 × 10−5

2.21 (1.19–4.10), 
P = 1.10 × 10−2

4.93 
(2.46–9.89), 
P = 6.69 × 10−6

All effect estimates were adjusted for age, sex, diabetes and PCs of ancestry.
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multiple limitations to the use of eGFR as a phenotype in GWAS, 
including the fact that serum creatinine level is influenced by the 
rate of creatinine production and metabolism in addition to kidney 
clearance. Accordingly, to capture a clinically meaningful disease 
state, we designed the score to predict moderately advanced CKD 
(stage 3 and above) rather than a mild degree of kidney dysfunction. 
Notably, our risk score does not incorporate available information 
on the polygenic determination of albuminuria51 or primary kidney 
diseases52,53. However, current GWAS for these traits remain several 
orders of magnitude smaller in sample size compared to the GWAS 
for eGFR; thus, incorporation of such data must await more power-
ful studies.

Fifth, we observed significant differences in the mean and vari-
ance of the GPS distributions by ancestry. The observed shift in the 
mean GPS toward higher values in individuals of African ancestry 
is independent of APOL1 and is driven by a higher average RAF in 
the African genomes. Interpopulation RAF differences are greatest 
for the risk alleles with the largest effects. This pattern may be con-
sistent with polygenic adaptation but the effects of uncorrected pop-
ulation stratification in the discovery GWAS may also potentially 
explain this phenomenon54. Therefore, based on this observation 
alone we were unable to determine if the observed shift contributes 
to the higher prevalence of CKD in individuals of African ancestry.

We note that the observed differences in the GPS distributions 
by ancestry represent a significant challenge for the clinical imple-
mentation of PRS. The key problem is that it is not possible to select 
a single GPS threshold for all ancestries that results in the similar 
magnitude of risk. Therefore, we explored several approaches that 
could be used to overcome this issue. One approach involves classi-
fying individuals undergoing GPS testing into one of the four ances-
try groups based on self-report, then using ancestry-specific cutoffs 
to interpret the results. However, because of a potential for racial 
bias, the use of race in clinical algorithms has been discouraged.55 
One could also classify a tested individual based on genetic ances-
try inferred from single-nucleotide polymorphism (SNP) data with 
subsequent application of ancestry-specific cutoffs. This approach 

still categorizes individuals into distinct groups and can be inac-
curate especially for those individuals with admixed genomes. 
Therefore, we tested two different regression-based ancestry correc-
tion methods that model a continuous spectrum of genetic ancestry 
based on the diverse reference panel of the 1000 Genomes. We dem-
onstrated that the reference population-based correction for both 
mean and variance can best align distribution tails for selection of a 
single trans-ancestry GPS cutoff. However, this results in some per-
formance trade-offs, especially in admixed populations. Although 
still imperfect, this ancestry adjustment may be helpful in improv-
ing risk score standardization for clinical use in diverse populations.

Lastly, we used the 2009 CKD-EPI equation (with a race coef-
ficient) because no alternatives were available at the time of our 
analyses. We do not expect this equation to affect GPS performance 
because our analyses were stratified by genetic ancestry and the race 
coefficient was uniformly applied to all African ancestry cohorts. 
Importantly, our sensitivity analyses confirmed a comparable per-
formance of the GPS when the case-control status was redefined 
using the newly proposed 2021 CKD-EPI equation without a race 
variable35,56.

In summary, we derived, optimized and tested a new GPS for 
CKD across major ancestries and proposed new methods for its 
trans-ethnic GPS standardization. We demonstrated that the poly-
genic component and APOL1 risk genotypes had additive effects on 
the risk of CKD. Our study showed that individuals in the highest 
2% of the risk score distribution had nearly a threefold increase in 
disease risk, the degree of risk equivalent to a positive family his-
tory. The key advantage of the GPS over traditional screening is that 
it can identify at-risk individuals before the onset of any disease 
manifestations. Timely communication of high-risk status may lead 
to adoption of protective lifestyle changes and improved adoption 
of the recommended screening guidelines. Because the cost of SNP 
arrays is no longer prohibitive, and multiple PRS can be determined 
using a single array, a population-based genetic screening approach 
for common diseases (for example, individuals older than 40) may 
prove to represent a cost-effective public health strategy. While our 
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Fig. 3 | Effects of the GPS for CKD. a, GPS quantile effects stratified by the APOL1 risk genotype (n = 2,020 with and n = 12,526 without the APOL1 risk 
genotype, shown in red and blue, respectively). The x axis depicts each quantile of the GPS ordered from the first (Q1) to the last (Q5) quantile. The y axis 
depicts the ORs of CKD for each of the quantile-defined subgroups in reference to the middle quantile (Q3) of those without the APOL1 risk genotype. The 
effect estimates (dots) and 95% CIs (vertical bars) were derived based on a fixed-effects meta-analysis across all 6 African ancestry testing cohorts and 
adjusted for age, sex, diabetes and PCs of ancestry. Regression lines were fitted for each group defined by the presence of the APOL1 risk genotype. b, GPS 
tail effects by ancestry. The x axis depicts the OR of CKD, the y axis depicts the testing cohort meta-analysis by ancestry (with numbers of cases, controls 
and cohorts). The effect estimates (dots) and 95% CIs (horizontal bars) are provided for the top 5% versus bottom 95% (sky blue), top 2% versus bottom 
98% (cobalt blue) and top 1% versus bottom 99% (navy blue). All effect estimates are adjusted for age, sex, diabetes and PCs of ancestry.
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study represents only the first step in this direction, prospective 
studies are needed to test the clinical utility and cost-effectiveness 
of this approach. The prospective eMERGE-IV study is specifically 
designed to test this strategy in a newly recruited population-based 
cohort of over 20,000 volunteers.
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Methods
Ethics statement. The study was approved by the Columbia University institutional 
review board (IRB) (nos. IRB-AAAQ9205, IRB-AAAT8208 and IRB-AAAS3500). 
All participating studies were approved by their local IRBs, including all sites 
contributing human genetic and clinical data to the eMERGE-III consortium. Of 
note, BioVU operated on an opt-out basis until January 2015 and on an opt-in 
basis since. The phenotypic data in BioVU are all deidentified and the study was 
designated ‘nonhuman participant’ research by the Vanderbilt IRB. All other 
participants provided written informed consent to participate in genetic studies.

Study cohorts. eMERGE. The eMERGE network provides access to electronic 
health record information linked to GWAS data for 102,138 individuals recruited in 
3 phases (eMERGE-I, II and III) across 12 participating medical centers from 2007 
to 2019 (54% female, mean age 69 years, 76% European, 15% African American, 
6% Latinx and 1% East or southeast Asian by self-report). All individuals were 
genotyped genome-wide; details on genotyping and quality control analyses have 
been described previously4,57. Briefly, all GWAS datasets were imputed using the 
multiethnic Haplotype Reference Consortium panel on the Michigan Imputation 
Server58. The imputation was performed in 81 batches. Post-imputation, we 
included only markers with a MAF ≥ 0.01 and R2 ≥ 0.8 in ≥75% of batches. A total 
of 7,529,684 variants were retained for the GPS analysis. For PC analysis (PCA), 
we used FlashPCA59 on a set of 48,509 common (MAF ≥ 0.01) and independent 
variants (pruned in PLINK with the --indep-pairwise 500 50 0.05 command). 
The G1 and G2 alleles of APOL1 were imputed separately using the Trans-Omics 
for Precision Medicine (TOPMed) imputation server60. The allelic frequencies 
of the G1 and G2 alleles were comparable to previous studies16, as summarized 
in Supplementary Table 4. The analyses were performed using a combination of 
VCFtools v.0.1.1361 and PLINK v.1.9 (ref. 62).

UKBB. The UKBB is a prospective cohort based in the UK that enrolled individuals 
ages 40–69 across the UK from 2006 to 201063. This cohort consisted of 488,377 
individuals (54% female, mean age 57 years, 94% European, 2% East or southeast 
Asian and 2% African ancestry by self-report), genotyped with high-density SNP 
arrays and linked to electronic health record data. All individuals underwent 
genotyping with the UKBB Axiom array from Affymetrix and UK BiLEVE Axiom 
arrays (approximately 825,000 markers). Genotype imputation was carried out 
using a 1000 Genomes reference panel with the IMPUTE4 software, as described 
previously63. We then applied quality control filters similar to eMERGE-III, 
retaining 9,233,643 common (MAF ≥ 0.01) variants imputed with high confidence 
(R2 ≥ 0.8). For PCA by FlashPCA59, we used a set of 35,226 variants that were 
common (MAF ≥ 0.01) and pruned them using the --indep-pairwise 500 50 0.05 
command in PLINK v.1.9 (ref. 62). The APOL1 G1 and G2 alleles were imputed 
separately using the TOPMed imputation server60.

BioMe biobank. The BioMe biobank is an electronic health record-linked 
biorepository that has been enrolling participants nonselectively from across the 
Mount Sinai Health System in New York between 2007 and 2021. A total of 32,595 
BioMe participants were genotyped on the Illumina Global Screening Array (GSA) 
through a collaboration with the Regeneron Genetics Center and 11,953 on the 
Illumina Global Diversity Array (GDA) through a collaboration with Sema4. 
Population groups were determined by self-reported race/ethnicity as published 
previously, with 32% Hispanic/Latinx, 27% Europeans, 22% African Americans 
and 2.6% East and southeast Asian participants64. We removed participants under 
40 years of age and those included in the CKDGen GWAS dataset11. We applied 
standard GWAS quality control analyses, removing participants with genotype 
missing rates >5% and variants with missing rates >5% or Hardy–Weinberg 
equilibrium violation per each ancestral group (P < 1.00 × 10−5 and P < 1.00 × 10−6 
for the GSA and GDA arrays, respectively). We additionally removed individuals 
who were cryptically related (second degree or above) or whose genotype-inferred 
sex did not match the self-reported sex. Imputation (including the G1 and G2 
variants in APOL1) was performed using the TOPMed Imputation Server with 
the TOPMed Freeze 8 reference. Post-imputation, variants with quality scores 
<0.7 were removed. After quality control, there were 9,154 BioMe participants of 
European ancestry, 7,318 of African ancestry, 11,606 of admixed ancestry Latinx 
and 843 of East Asian ancestry included in the analysis.

REGARDS study. REGARDS is a population-based, longitudinal study of 
incident stroke and associated risk factors in over 30,000 adults aged 45 years or 
older between 2003 and 2007 from all 48 contiguous US states and the District 
of Columbia65. By design, participants were oversampled if they had African 
American ancestry. Genotyping was performed on 8,916 self-identified African 
American participants using Illumina MEGA-EX arrays and imputed using the 
National Heart, Lung, and Blood Institute (NHLBI) TOPMed reference panel 
(Freeze 8). Participants were excluded if they had call rates <95%, if they were 
internal duplicates, had sex mismatches or were outliers on PCA (outside of 6 
s.d.). After quality control, there were 8,669 participants available for analysis (63% 
females, average age 62 years, 100% African American by self-report). Over 99% of 
the variants with a MAF > 1% had an imputation quality of 0.6 or higher; for GPS 
calculation we retained genotypes with a genotypic probability of 0.9 or higher.  

The APOL1 G1 and G2 alleles were genotyped directly using TaqMan SNP 
Genotyping Assays (Thermo Fisher Scientific).

HyperGEN study. HyperGEN is a cross-sectional, population-based study and a 
component of the NHLBI Family Blood Pressure Program that was designed to 
identify genetic risk factors for hypertension and its complications66. The cohort 
was recruited from 1995 to 2000 and consisted of sibships with at least 2 siblings 
diagnosed with hypertension before age 60, their adult offspring and age-matched 
controls. The study was subsequently expanded to include additional siblings 
and offspring to a total of n = 5,000. African American participants (62% females, 
average age 52 years) underwent whole-genome sequencing (WGS) through the 
NHLBI WGS program. To harmonize WGS data with the array-based studies, we 
compiled a set of non-monomorphic and non-multiallelic SNPs with a MAF > 1% 
that were overlapping with our array-typed African American cohorts. This yielded 
a total of 2,204,415 SNPs that were used as fence post markers for imputation using 
the same TOPMed release 2 reference panel as for the REGARDS, GenHAT and 
WPC studies. Over 99% of the variants with a MAF > 1% had an imputation quality 
of 0.6 or higher. Only genotypes with genotypic probability >0.9 were retained for 
the risk score calculation. The APOL1 genotypes were called directly from the WGS 
data. Individuals younger than 40 years were excluded; a total of 1,898 participants 
who self-identified as African American were retained in the testing cohort.

WPC. The WPC is a prospective cohort of first-time warfarin users aged 19 years 
or older starting anticoagulation for venous thromboembolism, stroke/transient 
ischemic attacks, atrial fibrillation, myocardial infarction and/or peripheral arterial 
disease67. The genotype data were generated using Illumina MEGA-EX arrays and 
1 M duo arrays for 599 and 297 participants, respectively (58% females, average age 61 
years, 100% African American by self-report). Imputation was performed using the 
TOPMed R2 reference panel (Freeze 8). More than 99% of the imputed variants with 
a MAF > 1% had an R2 of 0.6 or higher; genotypes with a genotypic probability of 0.9 
or higher were retained for PRS calculation. PCA was performed using EIGENSOFT 
v.6.1.4 based on 44,137 high-quality directly genotyped (missingness < 5%), common 
(MAF ≥ 5%) and independent (R2 < 0.05) SNPs. The APOL1 information was 
obtained from genotypic array data; rs143830837 was used as a proxy for rs71785313 
because these SNPs represent the same G2 variant and were recently merged in the 
dbSNP. For this analysis, only participants aged 40 years or older were included, 
leaving a total of 448 self-identified African American participants.

GenHAT study. GenHAT is an ancillary study to the Antihypertensive and 
Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)68. ALLHAT 
was a randomized, double-blind, multicenter clinical trial with over 42,000 
high-risk individuals with hypertension, aged 55 years or older and with at 
least 1 additional risk factor for cardiovascular disease. ALLHAT is the largest 
antihypertensive treatment trial to date and was ethnically diverse, enrolling 
>15,000 African American participants69. Participants were randomized into four 
groups defined by the class of assigned antihypertensive medication including 
chlorthalidone, lisinopril, amlodipine and doxazosin. The original GenHAT study 
(n = 39,114) evaluated the effect of the interaction between candidate genetic 
variants and different antihypertensive treatments on the risk of cardiovascular 
outcomes68. In an ancillary study to the original study, genotyping using Illumina 
MEGA-EX arrays was performed on 7,546 African American participants. Samples 
with a low call rate (<95%), sex mismatches and outliers in the PCA (>6 s.d.) were 
excluded, which resulted in 6,919 participants with genotypes available for analysis 
(58% females, average age 66 years, 100% African American by self-report). 
Genotype imputation was carried out using the NHLBI TOPMed R2 reference 
panel (Freeze 8); only genotypes with a genotypic probability of 0.9 or higher were 
retained. The APOL1 information was extracted from the genotypic array data, 
similar to the WPC cohort.

Ancestry definitions. In the UKBB and eMERGE-III datasets, the ancestry 
subcohorts were defined based on PCA clustering. We grouped all individuals 
into four major continental ancestry clusters by projecting each sample onto the 
reference PCs calculated from the 1000 Genomes reference panel70. Briefly, we 
merged our UKBB and eMERGE genotypes with 1000 Genomes data and kept 
only SNPs in common with 1000 Genomes. The markers were then pruned using 
PLINK --indep-pairwise 500 50 0.05. The numbers of pruned variants for the 
UKBB and eMERGE were 35,091 and 43,080, respectively. We then calculated 
the PCs for 1000 Genomes using FlashPCA and projected each of our samples 
onto those PCs. Ancestry assignments were then performed by coclustering of the 
reference populations. Ancestry memberships were verified by visual inspection 
of PCA plots and projections of self-reported race and ethnicity labels on the 
genetically defined ancestral clusters (Extended Data Fig. 5). Ancestry in BioMe, 
REGARDS, HyperGEN, WPC and GenHAT was determined by self-reported 
race/ethnicity; PCA was subsequently performed for ancestry verification and to 
exclude outliers.

CKD phenotyping and case-control definitions. For phenotyping, we used the 
computable CKD phenotype extensively validated by the eMERGE-III network4. 
We defined cases as having CKD stage 3 or above based on a 2009 CKD-EPI71 
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eGFR < 60 ml min 1.73m−2 on at least 2 serum creatinine measurements 3 
months apart, or patients on chronic dialysis or after a kidney transplant. 
Controls were defined by an eGFR > 90 ml min 1.73m−2 based on the latest 
serum creatinine in the absence of CKD-related International Classification 
of Diseases (ICD) codes4. The exclusion of individuals with CKD stage 2 
(eGFR = 60–90 ml min 1.73m−2) from case-control cohorts aimed to minimize 
potential case-control misclassification due to age-related decline in eGFR. The 
CKD definition of eGFR < 60 ml min 1.73m−2 is thought to reflect <50% of kidney 
function in adults, has been associated with increased morbidity and mortality 
and has been endorsed as a clinically meaningful threshold by the Kidney 
Disease: Improving Global Outcomes 2012 clinical practice guideline for the 
evaluation and management of CKD72. Only individuals 40 years of age or older 
were included across all datasets for consistency with the UKBB ascertainment 
strategy. Additional covariates used in the predictive models included age, sex, 
diabetes and PCs of ancestry. The diagnosis of diabetes, an established risk factor 
for kidney failure, was defined based on ICD codes as previously published18. The 
diagnosis of hypertension was not added as a covariate to avoid over-adjustment 
because the cause–effect relationship of hypertension to CKD is difficult to 
establish based on electronic health record data and CKD itself represents the 
most common cause of secondary hypertension.

PRS design and optimization. We used 70% Europeans of the UKBB (6,573 
cases and 170,635 controls) to optimize the polygenic component of the GPS. 
Optimization was performed by selecting the best model between two commonly 
used methods and a range of input parameters (Table 1 and Supplementary 
Table 1). We used the summary statistics for 8.2 million SNPs from the CKDGen 
consortium GWAS for eGFR11 in combination with the LD reference panel from 
the phase 3 1000 Genomes Project (all populations, n = 2,504)70. We first computed 
7 candidate GPS using the LDPred algorithm73 across the following range of rho 
(fraction of casual variants): 1.00, 1.00 × 10−1, 1.00 × 10−2, 1.00 × 10−3, 3.00 × 10−1, 
3.00 × 10−2 and 3.00 × 10−3. We also generated 12 pruning and thresholding (P + T) 
scores with r2 = 0.2 and P thresholds of 1.0, 1.00 × 10−2, 1.00 × 10−3, 1.00 × 10−4, 
1.00 × 10−5, 1.00 × 10−6, 1.00 × 10−7, 1.00 × 10−8, 3.00 × 10−2, 3.00 × 10−3, 3.00 × 10−4 
and 3.00 × 10−5. Based on the above parameters, each GPS was expressed as a 
weighted sum of alleles with weights based on the GWAS for the eGFR study:

GPS = −

M
∑

j=1
βj ×

(

dosagej or genotypej
)

where M is number of variants in the model and βj is the weight based on the 
GWAS summary statistics and the negative sign reflects an inverse relationship 
between eGFR and CKD.

Each of the 19 scores derived above was subsequently assessed for 
discrimination of CKD cases from controls in the first UKBB optimization dataset 
after adjustment for age, sex, diabetes status and 4 PCs of ancestry. The score with 
the best performance was defined by the maximal area under the receiver operator 
curve (AUC) and the largest fraction of variance explained. The best performing 
score was based on the P + T method (r2 = 0.2, P = 0.03) and consisted of 471,316 
variants, 41,426 of which had nonzero weights (Supplementary Table 1). This score 
was normal-standardized (by subtracting the control mean and dividing by the 
control s.d.) and advanced for testing in the second UKBB optimization cohort of 
African ancestry.

Modeling the effects of the APOL1 risk genotypes. To optimize trans-ethnic 
performance, our final score was further optimized using the second UKBB 
optimization dataset of African ancestry (967 cases and 6,191 controls). We aimed 
to assess if adding the APOL1 risk genotype (under a recessive model) enhanced 
CKD risk prediction. For this purpose, we first removed any variants in the APOL1 
region from the GPS equation to avoid duplicate scoring of this region. Next, we 
tested the GPS and APOL1 risk genotype jointly for association with CKD in this 
dataset. The GPS (without the APOL1 region) and recessive APOL1 risk genotypes 
both represented independently significant predictors of CKD before and after 
adjustment for age, sex, diabetes and four PCs of ancestry. The risk effects of 
APOL1 and GPS were additive, with 1 s.d. unit of the standard-normalized GPS 
conveying the risk that was approximately equivalent to the APOL1 risk genotype 
(Supplementary Table 2). We also tested for effect modification of the APOL1 risk 
genotype by the polygenic component in CKD prediction but found no significant 
interactive effects (P interaction = 0.29). Therefore, to account for the additive 
effect of the APOL1 risk genotypes, we updated the GPS for each individual using 
the following equation:

GPS =

{ Standardized GPS + 1, ifAPOL1 risk genotype is present

Standardized GPS + 0, otherwise

Predictive performance in independent testing datasets. The predictive 
performance of the final GPS formulation was assessed in 15 ancestrally diverse 
testing datasets, including 3 cohorts of European ancestry (14,201 cases and 

82,849 controls), 6 cohorts of African ancestry (4,268 cases and 10,276 controls), 
4 cohorts of Asian (East and southwest) ancestry (392 cases and 8,233 controls) 
and 2 admixed ancestry Latinx cohorts (1,386 cases and 2,239 controls)). We 
calculated a full set of standardized performance metrics according to the 
ClinGen guidelines33. Logistic regression models were used for predicting 
case-control status with adjustment for age, sex, diabetes, center and genotype/
imputation batch (if relevant) and four PCs of ancestry using the glm function 
in R v.3.6.3.

We used the pROC R package v.1.18.0 to calculate the AUC. We calculated 
variance explained using the Nagelkerke’s pseudo-R2, including for the full model 
(GPS plus covariates), for the covariates-only model and for the GPS component 
alone expressed as the R2 difference between the full and covariates-only models. 
We also expressed the effect of the standardized risk score as ORs (with 95% CIs) 
per s.d. unit of the control standard-normalized risk score distribution in each of 
the validation cohorts. We examined the risk score discrimination at tail cutoffs 
corresponding to the top 20, 10, 5, 2 and 1% of the GPS distribution by deriving 
the ORs of disease for each tail of the distribution compared to all other individuals 
in each cohort. We also calculated sensitivities and specificities for each cutoff 
point in each cohort.

The performance metrics were meta-analyzed across the testing cohorts using 
an inverse variance weighed fixed-effects method to derive pooled performance 
metrics for each ancestral grouping74. Finally, we calculated prevalence-adjusted 
positive and negative predictive values for each GPS cutoff based on pooled 
estimates of sensitivity and specificity and known CKD prevalence in the US 
population by ancestry. Statistical analyses were conducted using R v.3.6.3.

Comparing GPS distributions in the 1000 Genomes reference populations. To 
assess differences in the distributions of GPS by ancestry, we computed risk scores 
for the multiethnic reference of all 1000 Genomes phase 3 participants using our 
final equation:

GPS = −

M
∑

j=1
βj ×

(

dosagej
)

where M is the total number of variants included the model, βj is the optimized 
weight based on the GWAS summary statistics for each marker included in the 
score and dosagej refers to the effect allele dosage (0, 1, 2) for each variant j in 
the 1000 Genomes samples. Distributions were examined visually in the form of 
histograms and distributional differences by ancestry were tested using ANOVA.

Post-hoc ancestry adjustment. To express GPS effects on the same scale across 
ancestrally diverse individuals and facilitate selection of a single cutoff for clinical 
implementation, we adjusted for differences in the first two moments of the GPS 
distributions by ancestry. Using multiethnic eMERGE cohorts, we tested two 
different regression-based ancestry adjustment strategies that utilize the 1000 
Genomes (all populations) reference: method 1, which adjusts for differences in 
mean, and method 2, which adjusts for both differences in mean and variance.

For method 1, we first regressed the GPS of 1000 Genomes participants against 
the first five PCs as proposed previously75:

GPS ≈ α0 +
5

∑

i=1
αi × PCi

Fitting the model to the 1000 Genomes reference panel allows us to find α 
values and generate residuals. Next, we used the estimated α values to calculate the 
adjusted score for any individual projected onto the same PCA space:

Adjusted z score (method 1) =

∑M
J=1 wJ × DJ −

(

α0 +
∑5

i=1 αi × PCi
)

δ

where 
M
∑

J=1
wJ × DJ  is the raw GPS, α0 +

5
∑

i=1
αi × PCi is the predicted 

(ancestry-adjusted) mean and δ is the residual s.d. from the 1000 Genomes model 
(all populations).

To adjust for ancestral differences in both mean and variance (method 2), we 
used the same method as above but we also modeled residual variance (δ2) as a 
function of the PCs of ancestry:

δ2 ≈ β0 +
5

∑

i=1
βi × PCi

Next, we used the estimated α and β values to calculate the adjusted z-score:

Adjusted z score (method 2) =

∑M
j=1 wj × Dj −

(

α0 +
∑5

i=1 αi × PCi
)

√

β0 +
∑5

i=1 βi × PCi

where β0 +
5
∑

i=1
βi × PCi is the predicted (ancestry-adjusted) residual variance.
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The distributional transformations achieved by these methods were examined 
visually. We then compared the effects of these adjustments for the top percentile 
cutoffs in the eMERGE-III cohorts.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The final formulation of the GPS for CKD along with the standardized metrics of 
performance have been deposited in the PGS catalog at https://www.pgscatalog.
org/publication/PGP000269/. The UKBB genotype and phenotype data are 
available through the UKBB web portal at https://www.ukbiobank.ac.uk/. The 
eMERGE-III imputed genotype and phenotype data are available through the 
database of Genotypes and Phenotypes (dbGAP) under accession no. phs001584.
v2.p2. The BioMe genotype datasets used in this study were generated by Regeneron 
and are not publicly available. However, the data will be made available for the 
purposes of replicating the results by contacting the corresponding author and 
through appropriate collaboration and/or data sharing agreements. The WPC and 
REGARDS imputed genotype and phenotype data are available through dbGAP 
under accession nos. phs000708.v1.p1 and phs002719.v1.p1, respectively. The 
GenHAT cohort is also available on dbGAP under accession no. phs002716.v1.p1. 
The HyperGEN cohort has been sequenced by the TOPMed consortium; WGS 
data along with phenotype data are available through dbGAP under accession no. 
phs001293.v3.p1. Minimum testing datasets with the GPS, CKD outcome, and a 
set of essential clinical covariates for each cohort are also available when consistent 
with the consent given by the participants and can be requested directly from the 
corresponding author with a 2–4-week response time frame. Because these datasets 
contain clinical data, access to them may require a data use agreement.

Code availability
The CKD phenotype software is available from the Phenotype Knowledge 
Database at https://phekb.org/phenotype/chronic-kidney-disease. The CKD GPS 
score equation is available through the PGS catalog at https://www.pgscatalog.
org/publication/PGP000269/ and through our laboratory website at http://www.
columbiamedicine.org/divisions/kiryluk/study_GPS_CKD.php.
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Extended Data Fig. 1 | Distribution of risk allele frequencies (RAF) and their effect sizes for the variants included in the GPS. Distribution of risk allele 
frequencies (RAF) and their effect sizes for the variants included in the GPS (a) comparison of RAF distributions for the risk variants included in the 
CKD GPS demonstrates higher frequency of rare (RAF < 0.01) and common (RAF > 0.99) risk alleles in African compared to European genomes (based 
on 1000 G reference populations); this may be explained by the exclusion of variants with MAF < 0.01 in European discovery GWAS; (b) highly skewed 
effect size (weight) distribution for the variants included in the GPS for CKD; (c) Distribution of RAF difference (AFR-EUR) demonstrating higher average 
frequency of risk alleles in African genomes (mean RAF difference = 0.002) and a slight rightward shift of the RAF difference distribution from the 
expected mean of 0; (d) Mean RAF difference (AFR-EUR) as a function of effect size binned into three categories (high, intermediate, and low) based on 
the observed distribution of effects sizes in panel b, demonstrating that the risk alleles with larger effect size have higher average frequency in African 
compared to European genomes. EUR: European (N = 503) and AFR: African (N = 661). The bars represent 95% confidence intervals around the mean RAF 
difference estimate for each bin; two-sided P-values were calculated using t-test.
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Extended Data Fig. 2 | Risk score distributions in eMERGE-III (N = 22,453) and uKBB (N = 77,584) validation datasets. Risk score distributions in 
eMERGE-III (N = 22,453) and uKBB (N = 77,584) validation datasets: (a) the distribution of raw polygenic score without APOL1 in UKBB by ancestry; (b) 
the distribution of ancestry-adjusted polygenic score (method 1: mean-adjusted) in UKBB by ancestry; (c) the distribution of ancestry-adjusted polygenic 
score (method 2: mean and variance-adjusted) in UKBB by ancestry. Panels (d), (e) and (f) show the same analyses for the eMERGE-III dataset, respectively.
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Extended Data Fig. 3 | Final GPS calibration analysis in eMERGE-III cohorts combined (N = 22,453). Final GPS calibration analysis in eMERGE-III 
cohorts combined (N = 22,453): predicted risk (X-axis) as a function of the observed risk (Y-axis) in the multiethnic eMERGE-III dataset after ancestry 
adjustment with (a) method 1 and (b) method 2. The bars represent 95% confidence intervals.
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Extended Data Fig. 4 | Distributions of the raw (non-standardized) genome-wide polygenic score (GPS) by Yu et al. in the eMERGE-III validation 
datasets by ancestry. Distributions of the raw (non-standardized) genome-wide polygenic score (GPS) by Yu et al. in the eMERGE-III validation datasets 
by ancestry.
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Extended Data Fig. 5 | PCA projections of the study participants from the uKBB (top) and eMERGE-III (bottom) against the 1000 G reference 
populations. PCA projections of the study participants from the uKBB (top) and eMERGE-III (bottom) against the 1000 G reference populations: 
(a) UKBB (N = 77,584) and (b) eMERGE-III (N = 22,453) participants plotted against the reference 1000 G populations (N = 2,504); (b, e) plotted by 
self-reported race/ethnicity; and (c, f) plotted by final ancestry group assignment. X-axis: PC1; Y-axis: PC2; AFR: African; AMR: Admixed American; EAS: 
East Asian; EUR: European; and SAS: South Asian.
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