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Summary
Accurate colorectal cancer (CRC) risk predictionmodels are critical for identifying individuals at low and high risk of developing CRC, as

they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group)

and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants

contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction.

In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide as-

sociation studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the

PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD)

clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested

the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated

by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC

¼ 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the

PRS of the 140 known variants identified fromGWASs had the lowest AUC (AUC¼ 0.629). Based on the LDpred-derived PRS, we are able

to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the

PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no

family history andwould have been considered average risk under current screening guidelines, butmight benefit from earlier screening.

The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
Introduction

Colorectal cancer (CRC) is a leading cause of cancer death,

yet it is among the most preventable cancers in part
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because CRC screening is effective for both early detection

of treatable cancers and for reducing cancer risk by

removing pre-cancerous lesions.1 Despite improvements

in screening and treatment, about 50,000 fatal CRC cases
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occurred in the United States (US) in 2019.2 Better treat-

ments have improved survival rates but achieving higher

uptake and adherence to CRC screening could more

rapidly reduce morbidity and mortality.2,3 US 5-year rela-
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100%. The guidelines for initiating CRC screening are

currently based mainly on two risk factors: attained age

and family history of CRC.4 Use of these criteria results

in substantial under- and over-utilization of CRC screening

with associated harms, because more than 80% of all CRC

cases occur in those without a positive family history in

first-degree relatives. It is therefore important to improve

risk prediction to inform screening and other prevention

strategies. Risk prediction using data from genome-wide as-

sociation studies (GWASs) has been proposed in Kooper-

berg et al.5 Polygenic risk scores (PRS), such as those based

on LDpred,6 have shown great promise in improving pre-

diction for complex disease risk. The study from Khera

et al.7 is part of an emerging corpus considering the plausi-

bility of incorporating genome-wide PRS into disease

screening within health care systems.8 For coronary artery

diseases, the PRS was able to identify 10 times more people

at the same or higher risk than the conventionally used

monogenic test that identifies about 2 out of 100 individ-

uals with an OR > 3. They showed similar results for other

diseases, such as type 2 diabetes or breast cancer. Those at

high risk can potentially benefit from targeted interven-

tions, such as lipid-lowering drugs, dietary interventions,

or screening.7

Models have been developed and evaluated for

prediction of CRC risk using known genetic susceptibility

variants identified by GWASs.9–13 The area under the

receiver operating characteristics curve (AUC) has

improved as more susceptibility variants are included

with the most recent model that includes 63 known vari-

ants and family history yielding AUC ¼ 0.59 for both men

andwomen.9However,we foundknownvariants identified

to date explain only about 10% of the heritable fraction of

CRC risk.14 This suggests that substantial improvement in

prediction could be achieved by using a genome-wide

approach that includes many more single-nucleotide poly-

morphisms (SNPs) that, individually, may not reach the

stringent threshold for genome-wide significance.15

Machine-learning techniques, such as support vector

machines, penalized regression, neural networks, random

forests, and the extreme gradient tree boosting approaches,

have been applied to GWAS data.16–20 Typically, these ap-

proaches require first reducing the number of genetic var-

iants from millions to thousands and then building a

risk-prediction model from selected variants with various

machine-learning methods. For example, a widely used

approach for dimension reduction involves linkage

disequilibrium (LD)-based marker pruning or clumping21

and applying a p value threshold to association statistics.

As some of the familial aggregation of CRC is explained

by a polygenic component, such dimension reduction

based on p values may discard variants that individually

have little predictive power but collectively have substan-

tial predictive power. To account for this possibility, the

LDpred method employs a Bayesian framework to jointly

model all genetic variants of the genome in building the

PRS without a priori dimension reduction.6
434 The American Journal of Human Genetics 107, 432–444, Septem
Using statistical and machine-learning techniques on

GWAS data from more than 120,000 CRC-affected case

subjects and control subjects of European ancestry, we

address the question of whether a PRS that uses variants

beyond known CRC risk-associated variants can improve

discriminatory accuracy between CRC-affected case

subjects and control subjects. We developed PRS using

three different approaches, based on: (1) 140 known

GWAS variants as the baseline model; (2) SNP selection fol-

lowed by machine learning; and (3) LDpred. We then eval-

uated the performance of these scores externally in an in-

dependent contemporary community-based cohort of

101,987 study participants, including 72,791 of European

ancestry.
Material and Methods

Datasets
Derivation Datasets

To develop an accurate CRC risk prediction model, we used GWAS

data on 55,105 case subjects and 65,079 control subjects of Euro-

pean ancestry from large-scale research studies (�120,000 partici-

pants with genotype data on more than 40 million variants),

including the Genetics and Epidemiology of CRC Consortium

and Colon Cancer Family Registry (GECCO) with 29,864 case sub-

jects and 31,629 control subjects, the CRC Transdisciplinary Study

(CORECT) with 19,885 case subjects and 12,043 control subjects,

and United Kingdom Biobank (UKB) with 5,356 case subjects and

21,407 control subjects. For more details such as study participant

characteristics, genotyping, imputation, quality control, and sin-

gle-variant association analyses, readers are referred to the Supple-

mental Material and Methods (Section 3 and Table S1) and

Huyghe et al.14 Briefly, the average age was 62 years (standard de-

viation [SD]¼ 11 years). About 52%were men and 11% had a pos-

itive family history of CRC in first-degree relatives. Our primary

analysis was focused on individuals of European ancestry due to

insufficient numbers of CRC cases among other ancestral groups.

Evaluation Dataset

The risk prediction models were externally evaluated in the Ge-

netic Epidemiology Research on Adult Health and Aging (GERA)

cohort, an independent contemporary cohort including 101,987

genotyped participants (R18 years old) nested within the Kaiser

Permanente Northern California (KPNC) integrated healthcare de-

livery system.22 Participants provided a saliva sample and broadly

consented to the research use of their DNA and mailed survey

data, which was then linked to selected data from electronic

health records. Of note, this cohort was not used in any prior dis-

covery of CRC risk variants and, hence, provides the opportunity

for an independent evaluation. Details on the genotyping array,

quality control, and imputation have been described previ-

ously23 and in the Supplemental Material and Methods (Section

4 and Table S3).

As the model building was limited to case and control subjects

of European descent defined by genetic clustering with Euro-

peans from HapMap, we also restricted the primary analysis to

the genetically defined European subsets (n ¼ 72,791, 42,520

men and 30,271 women), which included 1,311 CRC cases,

3,949 advanced adenoma cases (AA), 13,472 adenoma cases,

and 10,730 individuals with hyperplastic polyps. A personal his-

tory of cancer was determined from cancer-registry data and
ber 3, 2020



Figure 1. Description of Three Approaches to Derive Polygenic Risk Scores (PRS) for Colorectal Cancer
electronic-health-record data. A family history of CRC was ascer-

tained by integrating data from baseline surveys and electronic

health records (i.e., diagnosis codes, family history documenta-

tion). About 9.6% of participants (n ¼ 7,029) had a positive fam-

ily history in first-degree relatives. Hyperplastic polyps, AA, and

non-AA were identified using Systematized Nomenclature of

Medicine (SNOMED) pathology codes and validated using natu-

ral language processing.24 We defined an AA as any adenoma

with villous histology or which was 10 mm in size or greater.

The cohort was unselected for any disease phenotype and

GERA participants were not asked to engage in specific medical

or screening tests for research purposes. However, given the age

distribution of the GERA participants (median age at baseline ¼
52 years with median follow-up 21 years), 70% of population

has undergone screening for CRC as part of their usual care,

either by fecal immunochemical testing (FIT, 38%) or endoscopy

(sigmoidoscopy or colonoscopy, 58%). All study participants pro-

vided written informed consent and the study was approved by

the KPNC Institutional Review Board.

Validation Dataset

We further validated the models in an independent study, the

Electronic Medical Records and Genomics (eMERGE) (n ¼
83,717). The details of the study were described elsewhere.25 A

brief description of the genotyping array, quality control, and

imputation is provided in Supplemental Material and Methods

(Section 5). The colorectal cancer case subjects were defined as

those who had at least two ICD9/10 codes for CRC. Control sub-

jects had zero ICD9/10 codes for CRC. Participants with a single

ICD9/10 code for CRC were excluded from analysis. Adults over

age 18 years who had confirmed European ancestry and no

missing age were included in the validation dataset, resulting a to-

tal of 38,214 participants. The characteristics of these participants

are provided in Table S10.
The American
Polygenic Risk Score Derivation
PRS provides a quantitative measure of an individual’s inherited

risk based on the cumulative impact of many genetic risk vari-

ants. Each variant is scored based on the number of variant alleles

an individual carries (e.g., zero, one, or two copies). The individ-

ual variant scores are then weighted according to the strength

and direction of their association with disease and finally

summed to give a single risk score. Imputed variants are scored

by expected number of variant alleles (i.e., dosage). We studied

three approaches for constructing PRS. Figure 1 depicts the sum-

mary of these different PRS derivation strategies. The weights for

Approach 1 of known loci are provided in Table S4. As the num-

ber of variants for the other two approaches are very large, the

weights for these variants are available upon request from the

authors.

Approach 1: Known GWAS Variants

Using GWAS, we and others have identified 140 SNPs that were

independently associated with CRC risk14 and references

therein.26,27 All but three were present in the GERA dataset. For

the three missing SNPs, we selected surrogates based on LD and

the p value of univariate association analysis. The surrogates are

provided in Table S4.

We calculated the PRS as a weighted sum of risk alleles
P

ib
_

ixi, where xi is the expected number of risk alleles and

b
_

i is the log-odds ratio (OR) estimate of single-variant associa-

tion from the previously published results that first

reported the variants or meta-analysis results of our datasets.

The meta-analysis adjusted for age, sex, study, and principal

components (PCs) to account for population substructure.

For the SNPs discovered in the data from this consortium, we

adjusted for the winner’s curse.28 We provided the details of

meta-analysis in Section 3.3, Supplemental Material and

Methods.
Journal of Human Genetics 107, 432–444, September 3, 2020 435



Approach 2: SNP Selection and Machine Learning

In this approach, we first selected a subset of SNPs using LD clump-

ing and p value thresholding and then built risk-prediction

models using machine learning. To avoid overfitting, we divided

the derivation datasets into two non-overlapping sets, one for

SNP selection and the other for model building.

SNP Selection. We used GWAS data from GECCO (29,864 case

subjects and 31,629 control subjects) and performed univariate as-

sociation analysis, adjusting for age, sex, study, and PCs to account

for population substructure. To remove highly correlated SNPs, we

performed LD-clumping using the LD-driven p value clumping

procedure in PLINK v.1.90b (–clump).29 In this process, the algo-

rithm generates clumps around index SNPs with p values less

than an a priori defined threshold. Each clump contains all SNPs

that are in LD with the index SNP, within 500 kilobases, as deter-

mined by pairwise correlation (R2) threshold. The algorithm itera-

tively cycles through all index SNPs, beginning with the smallest p

value, only allowing each index SNP to appear in one clump (non-

overlapping). The final output contains the most statistically sig-

nificant disease-associated SNP for each LD-based clump across

the genome. To identify the optimal p value cut-off and LD-R2

value, we chose a wide range of p value thresholds, from 5 3

10�8 to 0.01, and two R2 values, 0.02 and 0.2, to select SNPs and

calculated the corresponding PRS summing these SNPs weighted

by the log-OR estimates, where the log-OR is the log-odds ratio es-

timate of univariate association analysis using GECCO data. We

then used the UKB data (5,356 case subjects and 21,407 control

subjects) to evaluate the discriminatory accuracy of these PRS

(Figure S1). The AUC reached the maximum when R2 ¼ 0.02

and p value ¼ 1 3 10�3. At this threshold, we had about 15,000

SNPs. We then explored further the number of SNPs ranging

from 1,000 up to 50,000 and calculated the PRS by adding SNPs

in the incremental order of p values. The AUC of the PRS peaked

when the number of SNPs was at around 10,000 SNPs, which

were used for the subsequent model building.

Model Building. Based on these selected SNPs we developed pre-

diction models using machine-learning algorithms, using data

from CORECT on 19,885 case subjects and 12,043 control sub-

jects. We used two complementary machine-learning approaches,

penalized generalized linear regression30 and XGBoost.31 We ob-

tained the optimal values of the tuning parameters using 10-fold

cross validation and re-estimated the regression coefficients using

the entire CORECT data at the optimal tuning parameter values.

We performed penalized regression including both the known

GWAS variants PRS and top SNPs from the SNP-selection step ad-

justing for age, sex, genotyping phase, and PCs. The confounders

and known GWAS variants PRS were not penalized. We calculated

the overall PRS by summing the known loci PRS and
PN

i¼1b
_

i xi,

where xi is the ith selected SNP and b
_

i is the corresponding regres-

sion coefficient estimate from penalized regression. We performed

ridge, lasso and elastic net penalized regression. We used the R

package glmnet for the ridge and lasso regression and caret for

the elastic net.

XGBoost31 is based on gradient boosted decision trees, which, in

contrast to penalized regression methods, incorporate complex

non-linear interactions into prediction models in a non-additive

form. Boosting is a powerful ensemble learning algorithm in

which weak classifiers are added sequentially to correct the errors

made by existing classifiers toward building a strong classifier. As

in the penalized regression, we included both the known loci

PRS and top SNPs from the SNP-selection step. The PRS from

XGBoost is the classifier that gives the smallest misclassification
436 The American Journal of Human Genetics 107, 432–444, Septem
error in cross-validated datasets. We derived the model using the

R package XGBoost, a fast and efficient implementation of the

gradient tree boosting method.

Approach 3: LDpred

LDpred6 is a Bayesian genetic risk prediction method, developed

for genome-wide genetic risk prediction, which takes into account

LD among the markers (SNPs). In an infinitesimal model, all

markers are assumed to be causal and the marker effects follow a

normal distribution, i.e., bi � Nð0; ðn2 =MÞÞ, i ¼ 1, ., M, where

M is the total number of markers and h2 is the total heritability ex-

plained by the markers. In the non-infinitesimal model, only a

fraction of the M markers is assumed to be causal. A Gaussian-

mixture prior is assumed in which bi � Nð0; ðn2 =MrÞÞ with proba-

bility r and bi � 0 with probability (1 � r). LDpred computes the

posterior mean effects of markers, taking into account the LD

structure.

We used summary statistics from all GWASs, including GECCO,

CORECT, and UKB, and calculated LD using the genotypes from a

subset of our samples (29,305 case subjects and 31,727 control

subjects) to reduce computational burden; this far exceeded the

at least 2,000 individuals as suggested by LDpred. We further

restricted the genetic markers to the HapMap3 panel to circum-

vent the non-convergence issue from training on summary statis-

tics of very large sample sizes. LDPred requires a prior specification

of r, the fraction of causal variants. Because r is generally un-

known, we used a range of values for r: 1.0, 0.3, 0.1, 0.03, 0.01,

0.005, 0.003, and 0.001, the default values recommended by

LDPred. A total of 8 candidate PRS were derived. The analysis

was performed using the software LDpred.
Evaluation of Model Performance in an Independent

Cohort
We evaluated the discriminatory accuracy of PRS derived from the

three approaches described above in the GERA cohort by calcu-

lating the AUC.32 Our primary outcome was CRC in European

ancestry. We compared CRC case subjects with control subjects

who did not have CRC or any precursor lesions, including AA, ad-

enomas, or hyperplastic polyps. As a secondary analysis, we eval-

uated the AUC for AA, non-AA, and hyperplastic polyps, respec-

tively. As sensitivity analyses, we estimated AUC using control

subjects who also had precursor lesions in a sequential manner:

that is, for the CRC analysis, control subjects included any precur-

sor lesion; for AA, control subjects included adenoma and hyper-

plastic polyps; and for adenoma, control subjects included hyper-

plastic polyps. In addition, we estimated the AUCs stratified on

first-degree family history (yes/no), sex (men/women), and other

race/ethnicity (Asian, Hispanic, and African American). We

adjusted for age (at diagnosis for case subjects and at last observa-

tion for control subjects) and sex in all AUC estimations and ob-

tained the 95% confidence intervals by bootstrap resampling.

The p values for comparing the AUC estimates between different

models or groups were also obtained via bootstrap methods. A to-

tal of 500 bootstrap datasets were generated.

We performed the Cox proportional hazards model for CRC and

obtained estimates of hazard ratios (HRs) and 95% confidence in-

tervals (CI) by comparing the top percentiles (0.5%, 1%, 5%, 10%,

20%, and 30%) with the remaining percentiles (99.5%, 99%, 95%,

90%, 80%, and 70%) of PRS using Cox proportional hazards

regression. Observation time was defined as the earliest of the

following times: age at CRC diagnosis, death, or last follow-up.

The disease status was 1 if the individual developed CRC and
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Table 1. AUC Comparisons of CRC versus Control Subjects for PRS
Derived via Three Different Approaches in the Independent GERA
Cohort

PRS Derivation
Strategy n Variants AUC (95% CI)

Approach 1: Known GWAS Variants

Known variants 140 0.629 (0.613–0.645)

Approach 2: SNP Selection and Machine Learning

Ridge 10,000 0.633 (0.617–0.648)

Lasso 10,000 0.629 (0.601–0.646)

Elastic Net 10,000 0.630 (0.612–0.641)

XGBoost 10,000 0.629 (0.614–0.643)

Approach 3: LDpred

LDpred r ¼ 1 1,180,765 0.620 (0.603–0.637)

r ¼ 0.3 1,180,765 0.625 (0.608–0.642)

r ¼ 0.1 1,180,765 0.628 (0.611–0.645)

r ¼ 0.03 1,180,765 0.635 (0.619–0.651)

r ¼ 0.01 1,180,765 0.646 (0.630–0.662)

r ¼ 0.005 1,180,765 0.649 (0.633–0.664)

r ¼ 0.003 1,180,765 0.654 (0.639–0.669)

r ¼ 0.001 1,180,765 0.643 (0.628–0.658)

For LDpred, r is the proportion of genetic variants assumed to be causal for
CRC.
0 otherwise. As individuals joined GERA at different ages, we

treated age at starting membership as left truncated.

We estimated age-dependent disease incidences for CRC and

advanced neoplasia (CRC and AA), stratified by the top 5% and

bottom 5% of PRS by 1 minus the Kaplan-Meier estimator. For

advanced neoplasia, the observation time was defined as the

earliest of the following times: age at CRC diagnosis, AA, death,

or last follow-up, and the disease status was 1 if the individual

developed CRC or AA and 0 otherwise.

To gauge the potential clinical impact of PRS, we calculated the

proportion of case subjects and probabilities of developing CRC by

age 80, stratified by the deciles of LDpred-derived PRS. In addition,

we estimated the proportion of case subjects in the top 10%, 20%,

and 30% and the bottom 10%, 20%, and 30% of PRS both alone

and together with family history.

We used the R packages survival for the survival analysis and

survminer for the plots.
Results

Discriminatory Accuracy of Risk Prediction Models

There were 1,311 CRC case subjects and 53,722 control

subjects in the GERA cohort. The AUC estimate for

Approach 1 of 140 known GWAS variants was 0.629 with

95% confidence interval (CI): 0.613–0.645 (Table 1). In

Approach 2, we selected a total of 10,000 SNPs, based on

which we built prediction models using penalized linear

regression and XGBoost. Ridge regression produced an

AUC estimate of 0.633 (95% CI 0.617–0.648), slightly bet-
The American
ter than lasso (AUC 0.630, 95% CI 0.601–0.646) and elastic

net (AUC 0.629, 95% CI 0.612–0.641). XGBoost had a

similar AUC estimate: 0.629 (95% CI 0.614–0.643).

Approach 3, LDpred, had the best performance when the

fraction of causal variants (r) ¼ 0.003, producing an AUC

estimate of 0.654 (95% CI 0.639–0.669). This was a sub-

stantial improvement (4% increase in AUC) over both

Approach 1 (p value ¼ 0.010) and Approach 2 (p value ¼
0.010 for both ridge regression and XGBoost).

We further calculated the AUC of the best performing

model for each approach stratified by family history and

sex (Table S5). All models had statistically significantly

greater AUC estimates in individuals with a positive family

history than those without (the p values are 0.021, 0.020,

and 0.021 for Approaches 1, 2, and 3, respectively) and

there is no significant difference in AUC estimates between

men and women (p values > 0.05 for all models).

In addition to CRC, we evaluated the performance of the

models for advanced neoplasia, as well as CRC precursor le-

sions separately: AA, adenoma, and hyperplastic polyps in

Europeans (Table S5). The AUC estimate of LDpred for the

advanced neoplasia was 0.629 (95% CI 0.620–0.637), close

to the AUC estimate for AA, as it was mainly driven by the

large number of AA compared to CRC case subjects. All

models showed some discriminatory accuracy between

various precursor lesions compared with control subjects;

however, the accuracy was sequentially reduced compared

with the model for CRC. Again, LDpred had the best per-

formance among the three approaches. As a sensitivity

analysis, we assessed the AUC where the control subjects

also included precursor lesions (Table S6). The AUC esti-

mates were all reduced, but the reduction was modest

ranging from 0.01 to 0.02, and the AUC still showed a

sequential decrease across CRC, AA, adenoma, and hyper-

plastic polyps.

We estimated the AUC of the PRS among Asians (96 CRC

case subjects and 5,758 control subjects), Hispanics (70

CRC case subjects and 5,221 control subjects), and African

Americans (56 CRC case subjects and 2,409 control sub-

jects). All models performed more poorly for these demo-

graphic groups than for Europeans, whether for CRC, AA,

adenoma, or hyperplastic polyps (Table S7). For example,

the AUC estimates of LDpred for CRC were 0.601 (95%

CI 0.538–0.664), 0.602 (95% CI 0.500–0.624), and 0.543

(95% CI 0.542–0.662) for Asians, Hispanics, and African

Americans, respectively, which were considerably poorer

than for Europeans.

Association of PRS with Age of Diagnosis of CRC

Focusing on the best model for each approach, we esti-

mated the HR and 95% CI for individuals in the top

30%, 20%, 10%, 5%, 1%, and 0.5% of the PRS compared

with the remaining individuals (Table 2). Individuals in

the top 1% of LDpred-derived PRS distribution had 2.68-

fold increased CRC risk (95% CI 1.82–3.96) compared

with the remaining 99% of the individuals. In contrast,

the PRS from ridge regression identified only 0.5% of
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Table 2. Hazard Ratio Estimates (95% Confidence Intervals) of CRC for PRS Derived from Three Different Approaches

Approach 1 Approach 2 Approach 3

HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value

Top 30% versus remaining 1.92 (1.75–2.23) <2 3 10�16 1.94 (1.72–2.19) <2 3 10�16 2.19 (1.94–2.47) <2 3 10�16

Top 20% versus remaining 1.96 (1.73–2.23) <2 3 10�16 2.07 (1.82–2.35) <2 3 10�16 2.42 (2.14–2.74) <2 3 10�16

Top 10% versus remaining 2.08 (1.82–2.70) <2 3 10�16 2.26 (1.95–2.63) <2 3 10�16 2.54 (2.20–2.95) <2 3 10�16

Top 5% versus remaining 2.13 (1.63–2.69) <2 3 10�16 2.36 (1.95–2.86) 4.9 3 10�15 2.56 (2.12–3.09) <2 3 10�16

Top 1% versus remaining 2.15 (1.17–2.90) 8.3 3 10�3 2.34 (1.56–3.51) 3.7 3 10�5 2.68 (1.82–3.96) 6.6 3 10�07

Top 0.5% versus remaining 2.21 (1.16–3.81) 1.0 3 10�2 2.77 (1.64–4.69) 1.5 3 10�3 2.82 (1.66–4.79) 9.7 3 10�04

Approach 1: known GWAS variants; Approach 2: SNP selection and machine learning (ridge regression); Approach 3: LDpred with r ¼ 0.003.
individuals with a similar HR estimate. The estimates for

the known GWAS variants were smaller for the same top

0.5%. Furthermore, LDpred identified more than 30% of

individuals without a family history of CRC (Table S8) as

having about 2.2-fold higher risk of CRC, similar to that

of those with a first-degree family history of CRC. In

contrast, the ridge regression identified 10%, and the

known GWAS variants 5%, of these individuals as being

at this level of risk.
Assessing CRC Probabilities for PRS

We estimated age-specific probabilities for developing CRC

and advanced neoplasia by age 80 by percentile of PRS

(Figure 2). Individuals in the top 5% of PRS (high risk)

from LDpred had 7.5% (95% CI 5.6%–8.3%) and 23.5%

(95% CI 21.3%–25.7%) probabilities of developing CRC

and advanced neoplasia, respectively. In contrast, the

probabilities for individuals in the bottom 5% of PRS

(low risk) were 0.7% (95% CI: 0.1%–1.0%) and 4.3%

(95% CI: 3.3%–5.3%), respectively.

We calculated the proportion of cases stratified by the

deciles of LDpred-derived PRS and the corresponding dis-

ease probabilities by age 80 (Figure 3). The proportion of

cases that fell in the highest decile of PRS was 23.4%

(95% CI: 19.8%–27.0%); in contrast, the proportion of

cases in the lowest decile was 3.3% (95% CI: 2.0%–4.6%)

(Table 3).

We also estimated the disease probabilities stratified by

family history of CRC (Figure S2) and advanced neoplasia

(Figure S3). There was substantial variation in advanced

neoplasia probabilities for top 5% and bottom 5%, even

among those with a positive family history. For example,

individuals with a positive family history but with

LDpred-derived PRS in the low-risk group (bottom 5%)

had lower lifetime risk (�8.0% by age 80) than individuals

at average risk but without a family history (�12%). On the

other hand, individuals with a positive family history and

a LD-derived PRS in the high-risk group (top 5%) had a life-

time risk of about 35%. In general, compared with the PRS

based on known GWAS variants, the LDpred-derived PRS

showed a greater separation in disease probabilities be-

tween the high-risk and low-risk group and, among high-
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risk groups, between those with and without a family

history.

Taking into account both PRS and family history simul-

taneously, 18.0% of individuals were either in the top 10%

of PRS or had a positive family history in the cohort but

constituted 39.3% of case subjects (95% CI 38.9%–

39.8%) (Table 3). On the other hand, 9.1% of individuals

were in the bottom 10% of PRS and had no positive family

history but constituted only 2.3% of case subjects (95% CI

1.9%–2.8%). The proportion of case subjects with a posi-

tive family history was 21.0% (95% CI 19.3%–21.4%).

We further validated the LDpred models using eMERGE

data. The pattern of AUC estimates for LDPredmodels were

consistent to the results in GERA cohort; however, the

AUC estimates were overall weaker. Specifically, LDpred

rho ¼ 0.005 had the best AUC 0.629 followed closely by

LDpred rho ¼ 0.003 with AUC 0.628, both of which

improved substantially compared to the AUC for the

known 140 GWAS loci (AUC ¼ 0.591) (Table S11).
Discussion

It is important to be able to identify individuals at high risk

of CRC to enable enhanced screening and other interven-

tions, including dietary recommendations, weight loss,

and physical activity. Equally pressing is the need to iden-

tify individuals at low risk to prevent unnecessary

screening and associated complications. As CRC has a

sizable heritable fraction33 and is polygenic in nature

with probably thousands of genetic variants contributing

to its development,34 utilizing genome-wide data to pre-

dict risk holds promise for risk stratification for primary

and secondary prevention. Our study comprehensively ex-

plores the predictive power for CRC of genome-wide ge-

netic data, using the largest available resources including

more than 120,000 CRC case subjects and control subjects

of European ancestry with individual-level genetic data for

model building and an independent cohort study of more

than 100,000 genotyped participants for evaluation. We

show that the LDpred approach including 1.2 M variants

substantially improves the discriminatory accuracy over

an approach that includes only 140 known GWAS
ber 3, 2020



Figure 2. Disease Probabilities for Devel-
oping CRC and Advanced Adenoma
Probabilities of developing CRC (left) and
advanced neoplasia (right) by age for PRS
in the top 5% and bottom 5%, based on
models derived from three approaches:
knownGWAS variants (Approach 1), SNP se-
lection þ machine learning with ridge
regression (Approach 2), and LDpred with
r ¼ 0.003 (Approach 3). Average is the over-
all age-specific CRC (left) and advanced
neoplasia (right) probabilities for the GERA.
variants. In contrast, using a combination of SNP selection

and machine learning shows little improvement over the

known GWAS variants. To our knowledge, the LDpred-

derived PRS has the best performance of any existing

CRC genetic-risk-prediction model.

Although the improvement of the AUC from 0.629 to

0.654 may not appear marked (the improvement is 4%),

the AUC is an average measurement and it is critical to

evaluate the model with other measures to gauge the clin-

ical impact of the model. For example, the LDpred-derived

PRS identified the top 30% of the study population as hav-

ing a relative risk of �2.2, which is similar to that associ-

ated with having an affected first-degree relative.14,26 For

individuals with an affected first-degree relative, some

guidelines recommend initiation of screening with colo-

noscopy at an earlier age. In contrast, the PRS based on

the known GWAS variants identified <5% as having a

similar relative risk, demonstrating clearly the substantial

improvement of the LDpred-derived PRS. It is important

to note that only 10.5% of those individuals who were in

the top 30% risk based on LDpred-derived PRS had a family

history of CRC, demonstrating that the LDpred-derived

PRS can potentially identify a larger fraction of the study

population at high risk than family history alone. This

means that �27% (89.5% 3 30%) of the population who

are classified as average risk based on current guidelines

might benefit from earlier screening. As the PRS is a contin-

uous variable, it allows for tailored recommendation,

including a specified age of starting screening,9,26 rather

than simply defining a single high-risk group based on

family history that, as we show, is itself heterogeneous.

In Approach 2, if we were to use the same dataset for

feature selection and model development, there would be

overfitting in the model development, which result in a

worse performance in an independent dataset (Supple-

mental Material and Methods Section 6.1 and Table S9).

To mitigate this overfitting, we thus split the data in two

sets in the training step. The downside is that there is po-

tential power loss for feature selection due to smaller sam-

ple size used in calculating the test statistics compared to

the entire dataset as used in Approach 3. Nevertheless,
The American
we expect that when the sample size of studies continues

to rise, Approach 2 will be further improved. Our observa-

tions here are not unique to genome-wide risk prediction

for colorectal cancer (see Chatterjee et al.,15 Abraham

et al.,18 Evans et al.,35 Yang et al.,36 de Vlaming and Groe-

nen,37 and Malo et al.38 for examples).

The LDpred approach, which builds a risk prediction

model based on the entire genome, yielded better predic-

tive performance than the approach that initially selected

features before applying machine-learning algorithms. It is

likely that the derivation dataset that we used for SNP se-

lection is still too small given the large number of features

(40M genetic variants) and weak effect sizes. As a result,

performing SNP selection may lead to a substantial loss

of information that cannot be compensated for, even

with machine-learning algorithms like XGBoost. A poten-

tial limitation of LDpred is the assumption of additive ef-

fects only, whereas machine-learning approaches, such as

XGBoost and random forest, can accommodate more com-

plex non-linear effects but are not readily applicable to

ultra-high dimensional data. Approaches such as deep

learning that can handle ultra-high dimensional data

may have potential to further improve the accuracy of

prediction.

Including only the known GWAS variants (Approach 1)

is simplest computationally. The SNP selection in

Approach 2 also reduces computation time substantially.

LDpred is the most computationally intensive due to

the Monte Carlo Markov Chain (MCMC) procedure.

It took �4 days for LDpred to compute the regression

weights for each parameter setting, using our computing

infrastructure, which has a node of 20 cores with 768 GB

memory across all cores. Although LDpred is more compu-

tationally intensive than the other two PRS approaches,

the implementation of the LDpred-derived PRS into elec-

tronic health record (EHR) data, once genome-wide array

or sequencing data are available, will not be much more

difficult. For example, it took �6 h to calculate the

LDpred-derived PRS for 100,000 individuals in the GERA

cohort. As these scores need to be calculated only once

(although updates for improved models are likely), they
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Figure 3. Disease Probabilities and Proportion of Cases (95% CI) Subjects Stratified by the Deciles of LDpred-Derived PRS
can be calculated upfront and stored as part of individual

records like any other measurements (e.g., BMI, serum

cholesterol). The more substantial challenge to implemen-

tation is perhaps the storage of genotype or sequencing

data in a structured data object that is readily available to

the EHR. To date, this challenge has not been solved in a

standardized way;39,40 however, the increasing clinical

utility of PRS may motivate more rapid adoption of

standardized integration of genotype and sequencing in-

formation into EHRs, which would serve as a foundation

for implementation of a wide array of stratified-medicine

tools.

Our study’s large sample size likely is an important factor

for the improved performance of the LDpred approach.

Further, having access to an independent cohort that has

not been included in any previous discoveries is key to pro-

vide an unbiased evaluation of the models.

Ideally, CRC would be detected early, allowing easier

removal, perhaps even as a precursor lesion with a lower

risk of complications and without the need for additional

treatment such as radiation or chemotherapy. Previous

work has shown that a PRS with fewer than 50 known

loci was associated with increased risk of precursor le-

sions.41,42 Consistent with these previous reports, we

showed here, in our independent cohort, that all three

PRS approaches also predicted AA and, to a lesser extent,

adenoma and hyperplastic polyps. It is notable that as
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not all individuals have had endoscopy (colonoscopy or

sigmoidoscopy); some control subjects in this study may

have precursor lesions. As a result, the actual AUC is likely

to be underestimated. Nevertheless, this decline can be ex-

pected, as the disease generally progresses from hyper-

plastic polyps or non-advanced adenomas to AA to CRC,

with only a fraction of the precursor lesions giving rise to

CRC.

There are several limitations of our PRS. First, they were

built using individuals of European descent; hence, the

models show substantially lower performance in other

ancestral groups. This is not surprising due to the differ-

ence in LD across ancestral groups. To address this impor-

tant issue, dedicated efforts focused on other major racial/

ethnic populations (African Americans, Asians, and His-

panic/Latinos) are needed to develop unbiased PRS for

these ancestral groups. Second, as CRCs are heterogenous

with different molecularly defined subtypes, another limi-

tation of our study is treating CRC as a single entity. How-

ever, this problem is not easy to overcome, given the need

for large sample sizes and the limited availability of CRC

case subjects with detailed molecular characterization.

Third, while we validated that the LDpred model with

rho ¼ 0.003 performed among the best models in an inde-

pendent eMERGE study, the model needs to be further

evaluated for calibration as our preliminary evaluation

shows (Supplemental Material and Methods Section 6.2
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Table 3. Disease Probabilities (%) and Proportion of CRC Case Subjects (%) (95% CI) by Age 80 in High- and Low-Risk Groups

LDPred-Derived PRS LDPred-Derived PRS þ FamilyHx

PRS (%) Disease Prob
(95% CI) (%)

Prop of Cases
(95% CI) (%)

PRS or Pos
FamHx (%)a

Disease Prob
(95% CI) (%)

Prop of Cases
(95% CI) (%)

Top 10 6.4 (5.5–7.3) 23.4 (19.8–27.0) 18.0 5.9 (5.2–6.6) 39.3 (38.9–39.8)

20 5.4 (4.8–6.1) 39.7 (32.7–42.8) 26.7 5.3 (4.7–5.8) 51.7 (49.1–54.2)

30 4.6 (4.1–5.1) 50.3 (46.6–55.6) 35.6 4.7 (4.2–5.1) 60.7 (57.5–63.9)

PRS (%) Disease Prob
(95% CI) (%)

Prop of Cases
(95% CI) (%)

PRS and Neg
FamHx (%)b

Disease Prob
(95% CI) (%)

Prop of Cases
(95% CI) (%)

Bottom 10 0.9 (0.5–1.2) 3.3 (2.0–4.6) 9.1 0.7 (0.3–0.9) 2.3 (1.9–2.8)

20 1.1 (0.8–1.5) 8.1 (7.5–8.7) 18.4 0.9 (0.7–1.2) 6.1 (5.4–7.1)

30 1.4 (1.0–1.6) 15.3 (14.3–16.5) 27.6 1.0 (0.9–1.2) 10.1 (8.9–12.0)

aPRS or Pos. FamHx: individuals were in the top x% of PRS or had a positive family history.
bPRS and negative FamHx: individuals were in the bottom x% and had a negative family history.
and Table S12). Caution must be taken when evaluating

the calibration to account for the differences in individ-

ual-level characteristics such as screening prevalence and

lifestyle risk factors.

An important question remains about how far we can

improve thepredictiveperformanceusinggenome-widege-

netic data. To this end, we showed that the best normal

mixture model for effect-size distribution of our genome-

wide data of common variants (allele frequency > 5%)

yielded a theoretical maximal AUC of 0.68,34 suggesting

that the AUC can be further improved perhaps by using

more complexmodels, largernumberof SNPs, larger sample

sizes, or some combinationof these.Weattempted touse all

40MSNPs imputed to theHaplotypeReferenceConsortium

(HRC)whenbuilding LDpredmodels; however, we ran into

convergence problems and hence limited the presentation

only to SNPs in HapMap. The maximal theoretical AUC of

0.68 does not include rare variants. Based on our HRC

imputed data, we estimated that at least half of CRC herita-

bility is due to variants with an allele frequency< 1% (note

this does not include high-penetrance variants as these are

too rare to be imputed).14 Accordingly, it can be expected

that incorporation of rare variants can further improve

the predictive performance of genome-wide genetic predic-

tion models. This is probably not surprising as hundreds of

millions of rare variants exist in the genome.

Work from our group43–45 and others45 has demon-

strated that functional categories of the genome contribute

to the heritability of CRC and that most susceptibility loci

are in enhancers that vary between tumor and nonmalig-

nant tissue. Thus, including colorectal tissue-specific func-

tional data, such as transcriptomic or epigenomic data,

would allow us to narrow down to the variants that are

more likely to influence CRC risk. Our future direction is

to develop methods that combine different functional

annotation scores enriched for heritability, which will be

particularly important as we expand prediction to rare var-

iants. Furthermore, we will combine the PRS with other

predictive factors, such as age, sex, screening history,
The American
high-penetrance genes, environmental/lifestyle risk fac-

tors, or biomarkers of early detection, which we expect,

based on our previous analysis,9 will further substantially

improve risk prediction. The modifiable risk factors for

the CRC are an important component of risk prediction

because the best approach to primary prevention is avoid-

ance or elimination of these risk factors. For secondary pre-

vention, both genetics and modifiable risk factors would

be helpful for determining optimal CRC screening timing

and frequency.

An aim of precision/stratified medicine is to predict risk

of diseases basedonan individual’s geneticmakeup,which

could, in principle, be done at birth. An important conse-

quence of genetic risk prediction is the identification of

high-risk individuals who would otherwise not be identi-

fied as high risk. Such knowledge could result in changes

in healthcare management to mitigate risk with relatively

low-cost lifestyle changes or preventive therapies for those

at greater risk.46 Additionally, genetic risk prediction can

identify individuals at low risk who might otherwise be

enrolled unnecessarily in more frequent screening or sur-

veillance programs based on age, family history, or history

of polyps. The interval between colonoscopies or the mo-

dality of screening or surveillance could be informed by

PRS. Although the risk of colonoscopic perforation in the

setting of cancer screening is not precisely known,

estimates from diagnostic (in which there is a clinical sus-

picion of colorectal pathology) and therapeutic colonos-

copies suggest perforations occur about once per 1,000

procedures.47–49 Perforations are life threatening and

often require laparotomy, suggesting that non-invasive

screeningmodalities such as FITare attractive alternatives,

particularly in low-risk individuals. These are already used

in other countries where population-based endoscopy

screening is not available. Of course, in the US, endoscopy

is not population-wide either, so the capacity to stratify in-

dividuals on screening methods appropriate to their risk

should improve uptake, reduce costs, and reduce

complications.
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We expect that our model will be a useful first step to-

ward prioritizing those at high risk for targeted screening

or intervention and to design clinical trials to test preven-

tion strategies in the high-risk group, particularly with the

eye toward those below the age of 50 years given the rising

rates of early-onset CRC. In the future, it is expected that

detailed genome-wide genetic information will become

part of electronic medical records of all individuals to

calculate an individual PRS and identify those at high or

low risk for any disease, perhaps as early as at birth. This in-

formation will allow targeted interventions such as life-

style modifications, chemoprevention, and screening to

prevent diseases or diagnose them early. Broad accessi-

bility, dropping genotyping costs, and the need to account

for an individual’s risk factor profile to improve screening

have provided transformative opportunities in personal-

ized medicine. However, wide-scale adoption of PRS into

clinical practice raises key ethical and scientific challenges.

For example, as the current PRS has been developed in Eu-

ropeans given that most GWASs are done in this popula-

tion, it is substantially more predictive in Europeans

compared to other populations, which will widen the

health disparity gap. To overcome this major ethical and

scientific challenge, it is critical that researchers invest

time and effort in developing unbiased PRS across all major

US populations. Furthermore, it is important to evaluate

the acceptance and effectiveness of genetic testing for

risk-stratified interventions among the broader population

and health care providers. Cost effectiveness analysis will

provide important insights to guide policies related to

personalized medicine. In summary, we developed a PRS

with substantially higher ability both to predict CRC risk

and to identify those at high and low risk than the other

two approaches. The proposed CRC PRS offers a way to

improve CRC risk prediction, with the potential for trans-

lation to optimize clinical decision making.
Data and Code Availability

The source data for the findings of this study are available as fol-

lows. Genotype data for GECCO and CORECT have been depos-

ited in the database of Genotypes and Phenotypes (dbGaP) under

accession numbers phs001078.v1.p1, phs001415.v1.p1, and

phs001315.v1.p1. The UK Biobank data are publicly available

upon successful application from the UK Biobank. Genotype

data of GERA participants who consented to having their data

shared with dbGaP are available from dbGaP under accession

phs000674.v2.p2. The complete GERA data are available upon

successful application to the KP Research Bank. Genotype data

of eMERGE participants are available from dbGaP under the acces-

sion number phs001616.v1.p1.

The codes used for statistical analysis and generation of tables

and figures are publicly available.
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